In
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, a ''k''-frame is an
ordered set
In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; ...
of ''k''
linearly independent
In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concep ...
vectors in a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
; thus, ''k'' ≤ ''n'', where ''n'' is the
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
of the space, and an ''n''-frame is precisely an ordered
basis.
If the vectors are
orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
, or
orthonormal
In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal unit vectors. A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpe ...
, the frame is called an orthogonal frame, or
orthonormal frame, respectively.
Properties
* The set of ''k''-frames (particularly the set of orthonormal ''k''-frames) in a given vector space ''X'' is known as the
Stiefel manifold
In mathematics, the Stiefel manifold V_k(\R^n) is the set of all orthonormal ''k''-frames in \R^n. That is, it is the set of ordered orthonormal ''k''-tuples of vectors in \R^n. It is named after Swiss mathematician Eduard Stiefel. Likewise one ...
, and denoted ''V''
''k''(''X'').
* A ''k''-frame defines a
parallelotope (a generalized
parallelepiped
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square.
Three equiva ...
); the volume can be computed via the
Gram determinant
In linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors v_1,\dots, v_n in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product G_ = \left\langle v_i, v_j \right\r ...
.
See also
*
Frame (linear algebra)
In linear algebra, a frame of an inner product space is a generalization of a basis of a vector space to sets that may be linearly dependent. In the terminology of signal processing, a frame provides a redundant, stable way of representing a sign ...
*
Frame of a vector space
Riemannian geometry
*
Orthonormal frame
*
Moving frame
In mathematics, a moving frame is a flexible generalization of the notion of a coordinate frame (an ordered basis of a vector space, in conjunction with an origin) often used to study the extrinsic differential geometry of smooth manifolds em ...
{{Math-stub
Linear algebra