In the study of the arithmetic of
elliptic curves
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
, the ''j''-line over a
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
''R'' is the coarse
moduli scheme In mathematics, a moduli scheme is a moduli space that exists in the category of schemes developed by Alexander Grothendieck. Some important moduli problems of algebraic geometry can be satisfactorily solved by means of scheme theory alone, while ...
attached to the moduli problem sending a ring
to the set of isomorphism classes of elliptic curves over
. Since elliptic curves over the complex numbers are isomorphic (over an algebraic closure) if and only if their
-invariants agree, the affine space
parameterizing
j-invariants of elliptic curves yields a
coarse moduli space In mathematics, a moduli scheme is a moduli space that exists in the category of schemes developed by Alexander Grothendieck. Some important moduli problems of algebraic geometry can be satisfactorily solved by means of scheme theory alone, while ...
. However, this fails to be a
fine moduli space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spa ...
due to the presence of elliptic curves with automorphisms, necessitating the construction of the
Moduli stack of elliptic curves In mathematics, the moduli stack of elliptic curves, denoted as \mathcal_ or \mathcal_, is an algebraic stack over \text(\mathbb) classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves \mathcal_. In par ...
.
This is related to the
congruence subgroup
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the ...
in the following way:
:
Here the ''j''-invariant is normalized such that
has
complex multiplication
In mathematics, complex multiplication (CM) is the theory of elliptic curves ''E'' that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visibl ...
by