HOME

TheInfoList



OR:

In mathematics, particularly in
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, an isogeny is a
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
of
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Man ...
s (also known as group varieties) that is
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
and has a finite kernel. If the groups are
abelian varieties In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular f ...
, then any morphism of the underlying algebraic varieties which is surjective with finite fibres is automatically an isogeny, provided that . Such an isogeny then provides a
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
between the groups of -valued points of and , for any field over which is defined. The terms "isogeny" and "isogenous" come from the Greek word ισογενη-ς, meaning "equal in kind or nature". The term "isogeny" was introduced by Weil; before this, the term "isomorphism" was somewhat confusingly used for what is now called an isogeny.


Degree of isogeny

Let be isogeny between two algebraic groups. This mapping induces a pullback mapping between their rational function fields. Since the mapping is nontrivial, it is a field embedding and \operatorname f^* is a subfield of . The degree of the extension K(A) / \operatorname f^* is called degree of isogeny: : \deg f := (A): \operatorname f^*/math> Properties of degree: * If f:X \rightarrow Y, g:Y \rightarrow Z are isogenies of algebraic groups, then: \deg (g\circ f)=\deg g \cdot \deg f * If char \; K \nmid \deg f, then \deg f = , \ker\; f,


Case of abelian varieties

For
abelian varieties In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular f ...
, such as
elliptic curves In mathematics, an elliptic curve is a Smoothness, smooth, Projective variety, projective, algebraic curve of Genus of an algebraic curve, genus one, on which there is a specified point . An elliptic curve is defined over a field (mathematics), ...
, this notion can also be formulated as follows: Let ''E''1 and ''E''2 be abelian varieties of the same dimension over a field ''k''. An isogeny between ''E''1 and ''E''2 is a dense morphism of varieties that preserves basepoints (i.e. ''f'' maps the identity point on ''E''1 to that on ''E''2). This is equivalent to the above notion, as every dense morphism between two abelian varieties of the same dimension is automatically surjective with finite fibres, and if it preserves identities then it is a homomorphism of groups. Two abelian varieties ''E''1 and ''E''2 are called isogenous if there is an isogeny . This can be shown to be an equivalence relation; in the case of elliptic curves, symmetry is due to the existence of the dual isogeny. As above, every isogeny induces homomorphisms of the groups of the k-valued points of the abelian varieties.


See also

* Abelian varieties up to isogeny * Selmer group


References


External links

* * {{cite book , last=Mumford , first=David , author-link=David Mumford , year=1974 , title=Abelian Varieties , publisher=Oxford University Press , isbn=0-19-560528-4 Morphisms of schemes