HOME

TheInfoList



OR:

Interval arithmetic (also known as interval mathematics, interval analysis, or interval computation) is a mathematical technique used to put bounds on
rounding error A roundoff error, also called rounding error, is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. Rounding errors are ...
s and
measurement error Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. In statistics, an error is not necessarily a "mistak ...
s in mathematical computation. Numerical methods using interval
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th c ...
can guarantee reliable and mathematically correct results. Instead of representing a value as a single number, interval arithmetic represents each value as a range of possibilities. For example, instead of saying the height of someone is approximately 2 meters, one could using interval arithmetic, say that the height of the person is definitely between 1.97 meters and 2.03 meters. Mathematically, using interval arithmetic, instead of working with an uncertain
real-valued In mathematics, value may refer to several, strongly related notions. In general, a mathematical value may be any definite mathematical object. In elementary mathematics, this is most often a number – for example, a real number such as or an ...
variable x, one works with an interval ,b/math> that defines the range of values that x can have. In other words, any value of the variable x lies in the closed interval between a and b. A function f, when applied to x, yields an inexact value; f instead produces an interval ,d/math> which includes all the possible values for f(x) for all x \in ,b/math>. Interval arithmetic is suitable for a variety of purposes; the most common use is in scientific works, particularly when the calculations are handled by software, where it is used to keep track of
rounding error A roundoff error, also called rounding error, is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. Rounding errors are ...
s in calculations and of uncertainties in the knowledge of the exact values of physical and technical parameters. The latter often arise from measurement errors and tolerances for components or due to limits on computational accuracy. Interval arithmetic also helps find guaranteed solutions to equations (such as
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, a ...
s) and
optimization problem In mathematics, computer science and economics, an optimization problem is the problem of finding the ''best'' solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables ...
s.


Introduction

The main objective of the interval
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th c ...
is a simple way to calculate upper and lower bounds for the range of a function in one or more variables. These endpoints are not necessarily the true
supremum In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest l ...
or
infimum In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest ...
, since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset. This treatment is typically limited to real intervals, so quantities in the form : ,b= \, where a = and b = are allowed. With one of a, b infinite, the interval would be an unbounded interval; with both infinite, the interval would be the extended real number line. Since a real number r can be interpreted as the interval ,r intervals and real numbers can be freely combined. As with traditional calculations with real numbers, simple arithmetic operations and functions on elementary intervals must first be defined. More complicated functions can be calculated from these basic elements.


Example

As an example, consider the calculation of
body mass index Body mass index (BMI) is a value derived from the mass (weight) and height of a person. The BMI is defined as the body mass divided by the square of the body height, and is expressed in units of kg/m2, resulting from mass in kilograms and he ...
(BMI) and assess whether a person is overweight. BMI is calculated as a person's body weight in kilograms divided by the square of their height in meters. A weighing machine may have a resolution of one kilogram. Intermediate values cannot be discerned, and the true weight is rounded to the nearest whole number. For example, 79.6 kg and 80.3kg are indistinguishable as the weighing machine gives meaningful (correct) values only unto the accuracy of the nearest kilogram. It is unlikely that when the machine reads 80kg, the person weighs ''exactly'' 80.0kg. In normal rounding to the nearest value, if the weighing machine shows 80kg, it indicates a weight between 79.5kg and 80.5kg. This corresponds with the interval 9.5, 80.5/math>. For a man who weighs 80kg and is 1.80m tall, the BMI is approximately 24.7. A weight of 79.5 kg and the same height yields approx. 24.537, while a weight of 80.5 kg yields approx. 24.846. Since the function is monotonically increasing, we conclude that the true BMI is in the range 4.537, 24.846/math>. Since the entire range is less than 25, which is the cutoff between normal and excessive weight, we conclude that the man is of normal weight. The error in this case does not affect the conclusion (normal weight), but this is not always the case. If the man was slightly heavier, the BMI's range may include the cutoff value of 25. In that case, the scale's precision was insufficient to make a definitive conclusion. Also, note that the range of BMI examples could be reported as 4.5, 24.9/math>, since this interval is a superset of the calculated interval. The range could not, however, be reported as 4.6, 24.8/math>, as now the interval does not contain possible BMI values. Interval arithmetic states the range of possible outcomes explicitly. Results are no longer stated as numbers, but as intervals that represent imprecise values. The size of the intervals are similar to error bars in expressing the extent of uncertainty.


Multiple intervals

Height and body weight both affect the value of the BMI. We have already treated weight as an uncertain measurement, but height is also subject to uncertainty. Height measurements in meters are usually rounded to the nearest centimeter: a recorded measurement of 1.79 meters actually means a height in the interval .785, 1.795/math>. Now, all four combinations of possible height/weight values must be considered. Using the interval methods described below, the BMI lies in the interval :\frac \subseteq 4.673, 25.266 In this case, the man may have normal weight or be overweight; the weight and height measurements were insufficiently precise to make a definitive conclusion. This demonstrates interval arithmetic's ability to correctly track and propagate errors.


Interval operators

A binary operation \star on two intervals, such as addition or multiplication, is defined by : _1, x_2 _1, y_2= \. In other words, it is the set of all possible values of x \star y, where x and y are in their corresponding intervals. If \star is monotone in each operand on the intervals, which is the case for the four basic arithmetic operations (except division when the denominator contains 0), the extreme values occur at the endpoints of the operand intervals. Writing out all combinations, one way of stating this is : _1, x_2\star _1, y_2= \left \min\, \max \ \right provided that x \star y is defined for all x\in _1, x_2/math> and y \in _1, y_2/math>. For practical applications this can be simplified further: *
Addition Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or ''sum'' of ...
: _1, x_2+ _1, y_2= _1+y_1, x_2+y_2/math> *
Subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
: _1, x_2- _1, y_2= _1-y_2, x_2-y_1/math> *
Multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being ad ...
: _1, x_2\cdot _1, y_2= min \, \max\/math> * Division: \frac = _1, x_2\cdot \frac, where \begin \frac &= \left tfrac, \tfrac \right && \textrm\;0 \notin _1, y_2\\ \frac &= \left \infty, \tfrac \right \\ \frac &= \left tfrac, \infty \right \\ \frac &= \left \infty, \tfrac \right \cup \left tfrac, \infty \right \subseteq \infty, \infty&& \textrm\;0 \in (y_1, y_2) \end The last case loses useful information about the exclusion of (1/y_1, 1/y_2). Thus, it is common to work with \left \infty, \tfrac \right /math> and \left tfrac, \infty \right /math> as separate intervals. More generally, when working with discontinuous functions, it is sometimes useful to do the calculation with so-called ''multi-intervals'' of the form \bigcup_ \left a_i, b_i \right The corresponding ''multi-interval arithmetic'' maintains a set of (usually disjoint) intervals and also provides for overlapping intervals to unite. Interval multiplication often only requires two multiplications. If x_1, y_1 are nonnegative, : _1, x_2\cdot _1, y_2= _1 \cdot y_1, x_2 \cdot y_2 \qquad \text x_1, y_1 \geq 0. The multiplication can be interpreted as the area of a rectangle with varying edges. The result interval covers all possible areas, from smallest to the largest. With the help of these definitions, it is already possible to calculate the range of simple functions, such as f(a,b,x) = a \cdot x + b. For example, if a = ,2/math>, b = ,7/math> and x = ,3/math>: :f(a,b,x) = ( ,2\cdot ,3 + ,7= \cdot 2, 2\cdot 3+ ,7= ,13


Notation

To make the notation of intervals smaller in formulae, brackets can be used. \equiv _1, x_2/math> can be used to represent an interval. Note that in such a compact notation, /math> should not be confused between a single-point interval _1, x_1/math> and a general interval. For the set of all intervals, we can use : R:= \left \ as an abbreviation. For a vector of intervals \left( 1, \ldots , n \right) \in Rn we can use a bold font: mathbf/math>.


Elementary functions

Interval functions beyond the four basic operators may also be defined. For
monotonic function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of ord ...
s in one variable, the range of values is simple to compute. If f: \R \to \R is monotonically increasing (resp. decreasing) in the interval _1, x_2 then for all y_1, y_2 \in _1, x_2/math> such that y_1 \leq y_2, f(y_1) (resp. f(y_2) < f(y_1)). The range corresponding to the interval _1, y_2\subseteq _1, x_2/math> can be therefore calculated by applying the function to its endpoints: :f( _1, y_2 = \left min \left \, \max \left\\right From this, the following basic features for interval functions can easily be defined: *
Exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
: a^ = ^,a^/math> for a > 1, *
Logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of ...
: \log_a _1, x_2= log_a , \log_a /math> for positive intervals _1, x_2/math> and a>1, * Odd powers: _1, x_2n = _1^n,x_2^n/math>, for odd n\in \N. For even powers, the range of values being considered is important, and needs to be dealt with before doing any multiplication. For example, x^n for x \in 1,1/math> should produce the interval ,1/math> when n = 2, 4, 6, \ldots. But if 1,1n is taken by repeating interval multiplication of form 1,1\cdot 1,1\cdot \cdots \cdot 1,1/math> then the result is 1,1 wider than necessary. More generally one can say that, for piecewise monotonic functions, it is sufficient to consider the endpoints x_1, x_2of an interval, together with the so-called ''critical points'' within the interval, being those points where the monotonicity of the function changes direction. For the
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opp ...
and cosine functions, the critical points are at \left(\tfrac + n\right)\pi or n\pi for n \in \Z, respectively. Thus, only up to five points within an interval need to be considered, as the resulting interval is 1,1/math> if the interval includes at least two extrema. For sine and cosine, only the endpoints need full evaluation, as the critical points lead to easily pre-calculated values—namely -1, 0, and 1.


Interval extensions of general functions

In general, it may not be easy to find such a simple description of the output interval for many functions. But it may still be possible to extend functions to interval arithmetic. If f:\mathbb^n \to \mathbb is a function from a real vector to a real number, then
mathbb Blackboard bold is a typeface style that is often used for certain symbols in mathematics, mathematical texts, in which certain lines of the symbol (usually vertical or near-vertical lines) are doubled. The symbols usually denote Set (mathematic ...
n \to
mathbb Blackboard bold is a typeface style that is often used for certain symbols in mathematics, mathematical texts, in which certain lines of the symbol (usually vertical or near-vertical lines) are doubled. The symbols usually denote Set (mathematic ...
/math> is called an ''interval extension'' of f if : mathbf \supseteq \. This definition of the interval extension does not give a precise result. For example, both _1,x_2 = ^, e^/math> and _1,x_2 = /math> are allowable extensions of the exponential function. Tighter extensions are desirable, though the relative costs of calculation and imprecision should be considered; in this case, /math> should be chosen as it gives the tightest possible result. Given a real expression, its ''natural interval extension'' is achieved by using the interval extensions of each of its subexpressions, functions and operators. The ''Taylor interval extension'' (of degree k ) is a k+1 times differentiable function f defined by : mathbf := f(\mathbf) + \sum_^k\frac\mathrm^i f(\mathbf) \cdot ( mathbf- \mathbf)^i + mathbf mathbf \mathbf), for some \mathbf \in mathbf/math>, where \mathrm^i f(\mathbf) is the i-th order differential of f at the point \mathbf and /math> is an interval extension of the ''Taylor remainder'' :r(\mathbf, \xi, \mathbf) = \frac\mathrm^ f(\xi) \cdot (\mathbf-\mathbf)^. The vector \xi lies between \mathbf and \mathbf with \mathbf, \mathbf \in mathbf/math>, \xi is protected by mathbf/math>. Usually one chooses \mathbf to be the midpoint of the interval and uses the natural interval extension to assess the remainder. The special case of the Taylor interval extension of degree k = 0 is also referred to as the ''mean value form''.


Complex interval arithmetic

An interval can also be defined as a locus of points at a given distance from the center, and this definition can be extended from real numbers to
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. As it is the case with computing with real numbers, computing with complex numbers involves uncertain data. So, given the fact that an interval number is a real closed interval and a complex number is an ordered pair of
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s, there is no reason to limit the application of interval arithmetic to the measure of uncertainties in computations with real numbers. Interval arithmetic can thus be extended, via complex interval numbers, to determine regions of uncertainty in computing with complex numbers. The basic algebraic operations for real interval numbers (real closed intervals) can be extended to complex numbers. It is therefore not surprising that complex interval arithmetic is similar to, but not the same as, ordinary complex arithmetic. It can be shown that, as it is the case with real interval arithmetic, there is no distributivity between addition and multiplication of complex interval numbers except for certain special cases, and inverse elements do not always exist for complex interval numbers. Two other useful properties of ordinary complex arithmetic fail to hold in complex interval arithmetic: the additive and multiplicative properties, of ordinary complex conjugates, do not hold for complex interval conjugates. Interval arithmetic can be extended, in an analogous manner, to other multidimensional number systems such as
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quat ...
s and octonions, but with the expense that we have to sacrifice other useful properties of ordinary arithmetic.


Interval methods

The methods of classical numerical analysis cannot be transferred one-to-one into interval-valued algorithms, as dependencies between numerical values are usually not taken into account.


Rounded interval arithmetic

To work effectively in a real-life implementation, intervals must be compatible with floating point computing. The earlier operations were based on exact arithmetic, but in general fast numerical solution methods may not be available. The range of values of the function f(x, y) = x + y for x \in .1, 0.8/math> and y \in .06, 0.08/math> are for example .16, 0.88/math>. Where the same calculation is done with single digit precision, the result would normally be .2, 0.9/math>. But .2, 0.9\not\supseteq .16, 0.88/math>, so this approach would contradict the basic principles of interval arithmetic, as a part of the domain of f( .1, 0.8 .06, 0.08 would be lost. Instead, the outward rounded solution .1, 0.9/math> is used. The standard
IEEE 754 The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found i ...
for binary floating-point arithmetic also sets out procedures for the implementation of rounding. An IEEE 754 compliant system allows programmers to round to the nearest floating point number; alternatives are rounding towards 0 (truncating), rounding toward positive infinity (i.e. up), or rounding towards negative infinity (i.e. down). The required ''external rounding'' for interval arithmetic can thus be achieved by changing the rounding settings of the processor in the calculation of the upper limit (up) and lower limit (down). Alternatively, an appropriate small interval varepsilon_1, \varepsilon_2/math> can be added.


Dependency problem

The so-called ''dependency problem'' is a major obstacle to the application of interval arithmetic. Although interval methods can determine the range of elementary arithmetic operations and functions very accurately, this is not always true with more complicated functions. If an interval occurs several times in a calculation using parameters, and each occurrence is taken independently then this can lead to an unwanted expansion of the resulting intervals. As an illustration, take the function f defined by f(x) = x^2 + x. The values of this function over the interval 1, 1/math> are \left \tfrac, 2 \right As the natural interval extension, it is calculated as: : 1, 12 + 1, 1= ,1+ 1,1=
1,2 Onekama ( ) is a village in Manistee County in the U.S. state of Michigan. The population was 411 at the 2010 census. The village is located on the shores of Portage Lake and is surrounded by Onekama Township. The town's name is derived from "On ...
which is slightly larger; we have instead calculated the
infimum and supremum In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lo ...
of the function h(x, y)= x^2+y over x, y \in 1,1 There is a better expression of f in which the variable x only appears once, namely by rewriting f(x) = x^2 + x as addition and squaring in the quadratic :f(x) = \left(x + \frac\right)^2 -\frac. So the suitable interval calculation is :\left( 1,1+ \frac\right)^2 -\frac = \left \frac, \frac\right2 -\frac = \left , \frac\right-\frac = \left \frac,2\right/math> and gives the correct values. In general, it can be shown that the exact range of values can be achieved, if each variable appears only once and if f is continuous inside the box. However, not every function can be rewritten this way. The dependency of the problem causing over-estimation of the value range can go as far as covering a large range, preventing more meaningful conclusions. An additional increase in the range stems from the solution of areas that do not take the form of an interval vector. The solution set of the linear system :\begin x = p \\ y = p \end \qquad p\in 1,1/math> is precisely the line between the points (-1,-1) and (1,1). Using interval methods results in the unit square, 1,1\times 1,1 This is known as the '' wrapping effect''.


Linear interval systems

A linear interval system consists of a matrix interval extension mathbf\in
mathbb Blackboard bold is a typeface style that is often used for certain symbols in mathematics, mathematical texts, in which certain lines of the symbol (usually vertical or near-vertical lines) are doubled. The symbols usually denote Set (mathematic ...
and an interval vector mathbf\in
mathbb Blackboard bold is a typeface style that is often used for certain symbols in mathematics, mathematical texts, in which certain lines of the symbol (usually vertical or near-vertical lines) are doubled. The symbols usually denote Set (mathematic ...
. We want the smallest cuboid mathbf\in
mathbb Blackboard bold is a typeface style that is often used for certain symbols in mathematics,