
Intercellular communication (ICC) refers to the various ways and structures that biological
cells use to communicate with each other directly or through their environment. Often the environment has been thought of as the extracellular spaces within an animal. More broadly, cells may also communicate with other animals, either of their own group or species, or other species in the wider ecosystem. Different types of cells use different
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s and mechanisms to communicate with one another using
extracellular signalling molecules or electric fluctuations which could be likened to an intercellular ethernet.
Components of each type of intercellular communication may be involved in more than one type of communication,
making attempts at clearly separating the types of communication listed somewhat futile. Broadly speaking, intercellular communication may be categorized as being within a single animal or between an animal and other animals in the ecosystem in which it lives. In this article, intercellular communication has been further collated into various areas of research rather than by functional or structural characteristics.
Communication within an organism
Cell signalling
Molecular cell signaling

Single-celled organisms sense their environment to seek food and may send signals to other cells to behave symbiotically or reproduce. A classic example of this is the
slime mold
Slime mold or slime mould is an informal name given to a polyphyletic assemblage of unrelated eukaryotic organisms in the Stramenopiles, Rhizaria, Discoba, Amoebozoa and Holomycota clades. Most are near-microscopic; those in the Myxogastria ...
. The slime mold shows how intercellular communication with a small molecule (e.g.,
cyclic AMP
Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triph ...
) allows a simple organism to form from an organized aggregation of single cells. Research into
cell signalling
In biology, cell signaling (cell signalling in British English) is the process by which a cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all cellular life in both prokaryotes and eukary ...
investigated a
receptor
Receptor may refer to:
* Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse
*Receptor (biochemistry), in biochemistry, a protein molecule that receives and respond ...
specific to each signal or multiple receptors potentially being activated by a single signal. It is not only the presence or absence of a signal that is important but also the strength. Using a chemical gradient to coordinate cell growth and differentiation continues to be important as multicellular animals and plants become more complex. This type of intercellular communication within an organism is commonly referred to as ''cell signalling''. This type of intercellular communication is typified by a small signalling molecule diffusing through the spaces around cells, often relying on a diffusion gradient forming part of the signalling response.
Cell junctions
Complex organisms may have molecules to hold the cells together which can also be involved in intercellular communication. Some binding molecules are termed the
extracellular matrix
In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
and may involve longer molecules like
cellulose
Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
for the
cell wall
A cell wall is a structural layer that surrounds some Cell type, cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, ...
in plants or
collagen
Collagen () is the main structural protein in the extracellular matrix of the connective tissues of many animals. It is the most abundant protein in mammals, making up 25% to 35% of protein content. Amino acids are bound together to form a trip ...
in animals. When the
membranes of two animal cells are close, they may form special types of cell junctions, which come in three broad types: occluding junctions (such as
tight junction
Tight junctions, also known as occluding junctions or ''zonulae occludentes'' (singular, ''zonula occludens''), are multiprotein Cell junction, junctional complexes between epithelial cells, sealing and preventing leakage of solutes and water. Th ...
s and
septate junctions), anchoring junctions (such as
adherens junction
In cell biology, adherens junctions (or zonula adherens, intermediate junction, or "belt desmosome") are protein complexes that occur at cell–cell junctions and cell–matrix junctions in epithelial and endothelial tissues, usually more basa ...
s,
desmosome
A desmosome (; "binding body"), also known as a macula adherens (plural: maculae adherentes) (Latin for ''adhering spot''), is a cell structure specialized for cell-to-cell adhesion. A type of junctional complex, they are localized spot-like ad ...
s,
focal adhesion
In cell biology, focal adhesions (also cell–matrix adhesions or FAs) are large macromolecular assemblies through which mechanical force and regulatory signals are transmitted between the extracellular matrix (ECM) and an interacting Cell (biolo ...
s, and
hemidesmosome
Hemidesmosomes are very small stud-like structures found in keratinocytes of the epidermis of skin that attach to the extracellular matrix. They are similar in form to desmosomes when visualized by electron microscopy; however, desmosomes attach ...
s), and communicating junctions (such as
gap junction
Gap junctions are membrane channels between adjacent cells that allow the direct exchange of cytoplasmic substances, such small molecules, substrates, and metabolites.
Gap junctions were first described as ''close appositions'' alongside tight ...
s).
The structures they form also form parts of complex protein signaling pathways. In one respect, tight junctions play a generic role in cell signaling in that they may form a tight zip around cells, forming a barrier to stop even small, unwanted signalling molecules from getting between cells. Without these junctions, signalling molecules may spread to another group of cells which are not requiring the signal or escape too quickly from where they are needed. Gap junctions allow neighboring cells to directly exchange small molecules.
Pannexins, connexins, innexins
Pannexin
Pannexins (from Greek 'παν' — all, and from Latin 'nexus' — connection) are a family of vertebrate proteins identified by their homology to the invertebrate innexins. While innexins are responsible for forming gap junctions in invertebr ...
s,
connexin
Connexins (Cx)TC# 1.A.24, or gap junction proteins, are structurally related transmembrane proteins that assemble to form vertebrate gap junctions. An entirely different family of proteins, the innexins, forms gap junctions in invertebrates. Eac ...
s, and
innexin
Innexins are transmembrane proteins that form gap junctions in invertebrates. Gap junctions are composed of membrane proteins that form a channel permeable to ions and small molecules connecting the cytoplasm of adjacent cells. Although gap junc ...
s are
transmembrane protein
A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequently un ...
s that are all named after the Latin term ''nexus'', meaning to connect. They are grouped as they all share a similar structure of 4 transmembrane domains crossing the cell membrane in a similar way, but they do not all share enough
sequence homology
Sequence homology is the homology (biology), biological homology between DNA sequence, DNA, RNA sequence, RNA, or Protein primary structure, protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments ...
to allow them to be considered directly related.
Earlier investigations involving the connexins demonstrated cells forming a direct connection with each other using groups of connexins but not connections with the cell exterior. As such they were not considered to participate in the extracellular cell signalling at the time. Later studies made it apparent connexins could connect directly to the cell exterior meaning they are a conduit for the release an uptake of signalling molecules from the environment external to the cell. Furthermore, pannexins appear to do this to such an extent they may rarely if ever participate in direct cell to cell coupling. As indicated on the pannexin/innexin/connexin tree illustrated many animals do not appear to have pannexins/innexins/connexins, perhaps indicating there may be other similar proteins still to be discovered that serve to aid intercellular communication in these animals.
Direct links between cells
Septal pores

In
fungi
A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
, pores crossing their cell walls that separate cellular compartments act as an ICC for the movement of molecules to their neighboring compartments.
Most
red algae
Red algae, or Rhodophyta (, ; ), make up one of the oldest groups of eukaryotic algae. The Rhodophyta comprises one of the largest Phylum, phyla of algae, containing over 7,000 recognized species within over 900 Genus, genera amidst ongoing taxon ...
may have pores in the
cell septum that partitions a cell/filament called a pit connection. As a leftover of the
mitotic division it may be plugged up by the cell. There are also similar connections between neighboring cells/filaments that may allowing sharing of nutrients. Cells of a different species may initiate and form a pit connection with the host algae.
Plasmodesmata in plants

Plant cells usually have thick cell walls which need to be crossed if neighboring cells are to communicate directly. Plasmodesmata form a pipe through the cell wall forming an ICC. The pipe has another smaller membranous pipe concentric to it connecting the
endoplasmic reticulum
The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
of the two cells via a tube called the
desmotubule. The larger pipe also contains cytoskeletal and other elements. It is presumed viruses use plasmodesmata as a route through the cell walls to spread through the plant.
Gap junctions in animals
Gap junctions can form intercellular links, effectively a tiny direct regulated "pipe" called a
connexon
In biology, a connexon, also known as a connexin hemichannel, is an assembly of six proteins called connexins that form the pore for a gap junction between the cytoplasm of two adjacent cells. This channel allows for bidirectional flow of ions an ...
pair between the cytoplasms of the two cells that form the junction. 6 connexins make a connexon, 2 connexons make a connexon pair so 12 connexin proteins build each tiny ICC. This ICC allows two cells to communicate directly while being sealed from the outside world. Cells may form one or thousands of these tiny ICCs between them and their other neighbors, potentially forming large networks of directly linked cells. The connexon pairs form ICCs that can transport water, many other molecules up to around 1000 atoms in size and can be very rapidly signaled to turn on and off as required. These ICCs are also communicating electrical signals that can be rapidly turned on and off. To add to their versatility there are a range of these ICC types due to their being over 20 different connexins with different properties that can combine with each other in a variety of ways. The variety of potential signaling combinations that results is enormous. A much studied example of gap junctions electrical signalling abilities is in the
electrical synapse
An electrical synapse, or gap junction, is a mechanical and electrically conductive synapse, a functional junction between two neighboring neurons. The synapse is formed at a narrow gap between the pre- and postsynaptic neurons known as a gap junc ...
s found on nerves. In heart muscle gap junctions function to coordinate the beating of the heart. Adding even further to their versatility gap junctions can also function to form a direct connection to the exterior of a cell paralleling the functioning of the protein cousin the pannexins which are explained elsewhere.
Intercellular bridge

Intercellular bridges are larger than gap junction ICCs so are able to allow the movement of not only small signaling molecules but also large DNA molecules or even whole cell organelles. They are maintained between two cells allowing them to exchange cytoplasmic contents and are frequently observed when cells need intimate communication such as when they are reproducing. They are found in
Prokaryote
A prokaryote (; less commonly spelled procaryote) is a unicellular organism, single-celled organism whose cell (biology), cell lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Ancient Gree ...
s for exchanging DNA, small organisms such as
Pinnularia,
Valonia ventricosa,
Volvox
''Volvox'' is a polyphyletic genus of chlorophyte green algae in the family Volvocaceae. ''Volvox'' species form spherical colonies of up to 50,000 cells, and for this reason they are sometimes called globe algae. First reported by Antonie van L ...
,
C. elegans and
mitosis
Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
generally (
Cytokinesis
Cytokinesis () is the part of the cell division process and part of mitosis during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division ...
),
Blepharisma for sexual reproduction and during
Meiosis
Meiosis () is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one c ...
including
Spermatocytogenesis
Spermatocytogenesis is the male form of gametocytogenesis and involves stem cells dividing to replace themselves and to produce a population of cells destined to become mature sperm.
The stem cells involved are called spermatogonia and are a sp ...
to synchronise development of germ cells and
oogenesis
Oogenesis () or ovogenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated before birth during embryonic devel ...
in larger organisms. Bridges have shown to assist in cell migration as shown in the adjacent picture. Cytoplasmic bridges can also be used to attack another cell as in the case of
Vampirococcus.
Cell fusion
Cells that require a more permanent, extensive cytoplasmic linkage may fuse with each other to varying degrees in many cases forming one large cell or syncytium. This happens extensively during the development of
skeletal muscle
Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
forming large
muscle fiber
A muscle cell, also known as a myocyte, is a mature contractile cell in the muscle of an animal. In humans and other vertebrates there are three types: skeletal, smooth, and cardiac (cardiomyocytes). A skeletal muscle cell is long and threadl ...
s. Later it was confirmed in other tissues such as the eye lens. Though both involving cell fibers, in the case of the eye lens the cell fusion is more limited in scope resulting in a less extensively fused stratified syncytium.
Vesicles

Lipid membrane bound vesicles of a large range of sizes are found inside and outside of cells, containing a huge variety of things ranging from food to invading organisms, water to signaling molecules. Using an electrical nerve impulse from a
neuron
A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
of a
neuromuscular junction
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber.
It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction.
Muscles require innervation to ...
to stimulate a muscle to contract is an example of very small
(about 0.05μm) vesicles being directly involved in regulating intercellular communication. The neuron produces thousands of tiny vesicles, each containing thousands of signalling molecules. One vesicle is released close to the muscle every second or so when resting. When activated by a nerve impulse more than 100 vesicles will be released at once, hundreds of thousands of signalling molecules, causing a significant contraction of the muscle fiber. All this happens in a small fraction of a second.
Generally small vesicles used to transport signalling molecules released from the cell are termed
exosomes or simply extracellular vesicles (EV), and in addition to their importance to the organism they are also important for
biosensor
A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector.
The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
s.
Extracellular vesicles can be released from malignant cancer cells. These extracellular vesicles have been shown to contain gap junction proteins over-expressed in the malignant cells that spread to non-cancerous cells appearing to enhance the spread of the malignancy. Vesicles are also associated with the transport of materials outside of the cell to enable growth and repair of tissues in the extracellular matrix. In situations such as these they may be given special designations such as Matrix Vesicles (MV).
Examples of larger vesicles are in regulatory secretary pathways in
endocrine
The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypotha ...
,
exocrine tissues,
transcytosis
Transcytosis (also known as cytopempsis) is a type of transcellular transport in which various macromolecules are transported across the interior of a cell (biology), cell. Macromolecules are captured in Vesicle (biology), vesicles on one side of ...
and the
vesiculo-vacuolar organelle
A vesiculo-vacuolar organelle (VVO) is an organelle that contributes to endothelial cell permeability. VVOs are found in the endothelium of normal blood vessels and vessels associated with tumors or allergic inflammation. VVOs, which cover the wh ...
(VVO) in endothelial and perhaps other cell types. Another form of transfer of pieces of membrane around junctions is called trans-endocytosis. Some large intercellular vesicles also appear to stay intact as they transport their contents from one part of a tissue to another and involve gap junction plaques.
Communication in nervous systems


When we think of intercellular communication we often use our
nervous system
In biology, the nervous system is the complex system, highly complex part of an animal that coordinates its behavior, actions and sense, sensory information by transmitting action potential, signals to and from different parts of its body. Th ...
as a point of reference.
Nerves
A nerve is an enclosed, cable-like bundle of nerve fibers (called axons). Nerves have historically been considered the basic units of the peripheral nervous system. A nerve provides a common pathway for the electrochemical nerve impulses called ...
made up of many cells in vertebrates are typically highly specialized in form and function usually being the most complex in the
brain
The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
. They ensure rapid precise, directional cell to cell communication over longer distances, for example from your brain to your hand. The
nerve cells
A neuron (American English), neurone (British English), or nerve cell, is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system. They are located in the nervous system and help to ...
can be thought of as intermediary's, not so much communicating with each other but rather passing on the messages from one neighboring cell to another. Being "accessory" cells that pass on the message they require an additional space and can consume a lot of energy within an organism.

Simpler organisms such as sponges and placozoans often have less food availability and so less energy to spare. Their nervous systems are less specialized and the cells that are part of it are required to do other functions as well.
Ephaptic coupling
When groups of nerve cells form another type of intercellular communication called
ephaptic coupling can arise. It was first quantified by Katz in 1940 but it has been difficult to associate any one structure or "ephapse" with this form of communication. There are reductionist attempts to associate particular groups of nerve cells exhibiting ephaptic coupling with particular functions in the brain. As yet there are no studies on the simplest neural systems such as the polar bodies of Ctenophores to see if ephaptic coupling may explain some of their more complex behaviors.
Ecosystem intercellular communication
The definition of biological communication is not simple. In the field of cell biology early research was at a cellular to organism level. How the individual cells in one organism could affect those in another was difficult to trace and not of primary concern. If intercellular communication includes one cell transmitting a signal to another to elicit a response, intercellular communication is not restricted to the cells within a single organism. Over short distances interkingdom communication in plants is reported.
In-water reproduction often involves vast synchronized release of
gametes
A gamete ( ) is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. The name gamete was introduced by the Ge ...
called
spawn
Spawn or spawning may refer to:
* Spawning, the eggs and sperm of aquatic animals
Arts, entertainment and media
* Spawn (character), a fictional character in the comic series of the same name and in the associated franchise
** ''Spawn: Armageddon' ...
ing. Over large distances cells in one plant will communicate with cells in another plant of the same species and other species by releasing signals into the air such as
green leaf volatiles that can, among other things, pre-warn neighbors of herbivores or in the case of ethylene gas the signal triggers
ripening
Ripening is a process in fruits that causes them to become more palatable. In general, fruit becomes sweeter, less green, and softer as it ripens. Even though the acidity of fruit increases as it ripens, the higher acidity level does not make t ...
in fruits. Intercellular signalling in plants can also happen below ground with the
mycorrhizal network which can link large areas of plants via fungal networks allowing the redistribution of environmental resources.
Looking at insect colonies such as
bees and
ant
Ants are Eusociality, eusocial insects of the Family (biology), family Formicidae and, along with the related wasps and bees, belong to the Taxonomy (biology), order Hymenoptera. Ants evolved from Vespoidea, vespoid wasp ancestors in the Cre ...
s we have discovered the pheromones released from one organism's cells to another organism's cells can coordinate colonies in a way reminiscent of
slime mold
Slime mold or slime mould is an informal name given to a polyphyletic assemblage of unrelated eukaryotic organisms in the Stramenopiles, Rhizaria, Discoba, Amoebozoa and Holomycota clades. Most are near-microscopic; those in the Myxogastria ...
s. Cell to cell signalling using "pheromones" was also found in more complex animals. As complexity increases so does the effect of signals. "Pheromones" in more complex animals such as vertebrates are now more correctly referred to as "chemosignals" including between species.
The idea that intercellular communication is so similar among cells within an organism as well as cells between different organisms, even prey, is demonstrated by
vinnexin.
This protein is a modified form of an innexin protein found in a caterpillar. That is, the vinnexin is very similar to the caterpillar's own innexin, and could only have been derived from a non-viral innexin in some way that is unclear. The caterpillar innexin forms normal intercellular connections inside the caterpillar as part of the caterpillar's immune response to an egg implanted by a parasitic wasp. The innexin helps ensure the wasp egg is neutralized, saving the caterpillar from the parasite. So what does the vinnexin do and how? Evolution has led to a virus that communicates with the wasp in a way that evades the wasps antiviral responses, allowing the virus to live and replicate in the wasps ovaries. When the wasp injects its egg into the caterpillar host many virus from the wasp's ovary are also injected. The virus particles do not replicate in the caterpillar cells but rather communicate with the caterpillars genetic machinery to produce vinnexin protein. The vinnexin protein incorporates itself into the caterpillar's cells altering the communication in the caterpillar so the caterpillar goes on living but with an altered immune response. Vinnexins are able to mix with normal innexins to alter communication within the caterpillar and probably do. The altered communication within the caterpillar prevents the caterpillar's defenses rejecting the wasps egg. As a result, the wasp egg hatches, consumes the caterpillar and the virus from the wasp larva's mother, and repeats the cycle. It can be seen the virus and wasp are essential to each other and communicate well with each other to allow the virus to live and replicate, but only in a non-destructive way inside the wasp ovary. The virus is injected into a caterpillar by the wasp, but the virus does not replicate in the caterpillar, the virus only communicates with the caterpillar to modify it in a non-lethal way. The wasp larvae will then slowly eat the caterpillar without being stopped while communicating with the virus again to ensure that the wasp has a place in its ovary for it to again replicate. Connexins/innexins/vinnexins, once thought to only participate in providing a path for signaling molecules or electrical signals have now been shown to act as a signaling molecule itself.
References
{{Reflist, 2
Cell biology
Cell communication
Cell anatomy
Cell signaling
Systems biology