Introduction
Humans interact with computers in many ways, and the interface between the two is crucial to facilitating this interaction. HCI is also sometimes termed ''human–machine interaction'' (HMI), ''man-machine interaction'' (MMI) or ''computer-human interaction'' (CHI). Desktop applications, internet browsers, handheld computers, and computer kiosks make use of the prevalent graphical user interfaces (GUI) of today. Voice user interfaces (VUI) are used for speech recognition and synthesizing systems, and the emerging multi-modal and Graphical user interfaces (GUI) allow humans to engage with embodied character agents in a way that cannot be achieved with other interface paradigms. The growth in human–computer interaction field has led to an increase in the quality of interaction, and resulted in many new areas of research beyond. Instead of designing regular interfaces, the different research branches focus on the concepts of multimodality over unimodality, intelligent adaptive interfaces over command/action based ones, and active interfaces over passive interfaces. The Association for Computing Machinery (ACM) defines human–computer interaction as "a discipline that is concerned with the design, evaluation, and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them". An important facet of HCI is user satisfaction (or End-User Computing Satisfaction). It goes on to say: "Because human–computer interaction studies a human and a machine in communication, it draws from supporting knowledge on both the machine and the human side. On the machine side, techniques inHuman–computer interface
The human–computer interface can be described as the point of communication between the human user and the computer. The flow of information between the human and computer is defined as the ''loop of interaction''. The loop of interaction has several aspects to it, including: * Visual Based: The visual-based human–computer interaction is probably the most widespread human–computer interaction (HCI) research area. * Audio Based: The audio-based interaction between a computer and a human is another important area of HCI systems. This area deals with information acquired by different audio signals. * ''Task environment'': The conditions and goals set upon the user. * ''Machine environment'': The computer's environment is connected to, e.g., a laptop in a college student's dorm room. * ''Areas of the interface'': Non-overlapping areas involve the processes related to humans and computers themselves, while the overlapping areas only involve the processes related to their interaction. * ''Input flow'': The flow of information begins in the task environment when the user has some task requiring using their computer. * ''Output'': The flow of information that originates in the machine environment. * ''Feedback'': Loops through the interface that evaluate, moderate, and confirm processes as they pass from the human through the interface to the computer and back. * ''Fit'': This matches the computer design, the user, and the task to optimize the human resources needed to accomplish the task.Goals for computers
Human–computer interaction studies the ways in which humans make—or do not make—use of computational artifacts, systems, and infrastructures. Much of the research in this field seeks to ''improve'' the human–computer interaction by improving the ''usability'' of computer interfaces. How usability is to be precisely understood, how it relates to other social and cultural values, and when it is, and when it may not be a desirable property of computer interfaces is increasingly debated. Much of the research in the field of human–computer interaction takes an interest in: * Methods for designing new computer interfaces, thereby optimizing a design for a desired property such as learnability, findability, the efficiency of use. * Methods for implementing interfaces, e.g., by means ofDesign
Principles
Methodologies
Various strategies delineating methods for human–PC interaction design have developed since the conception of the field during the 1980s. Most plan philosophies come from a model for how clients, originators, and specialized frameworks interface. Early techniques treated clients' psychological procedures as unsurprising and quantifiable and urged plan specialists to look at subjective science to establish zones, (for example, memory and consideration) when structuring UIs. Present-day models, in general, center around a steady input and discussion between clients, creators, and specialists and push for specialized frameworks to be folded with the sorts of encounters clients need to have, as opposed to wrapping user experience around a finished framework. * Activity theory: utilized in HCI to characterize and consider the setting where human cooperations with PCs occur. Action hypothesis gives a structure for reasoning about activities in these specific circumstances and illuminates the design of interactions from an action-driven perspective. * User-centered design (UCD): a cutting-edge, broadly-rehearsed plan theory established on the possibility that clients must become the overwhelming focus in the plan of any PC framework. Clients, architects, and specialized experts cooperate to determine the requirements and restrictions of the client and make a framework to support these components. Frequently, client-focused plans are informed by ethnographic investigations of situations in which clients will associate with the framework. This training is like participatory design, which underscores the likelihood for end-clients to contribute effectively through shared plan sessions and workshops. * Principles of UI design: these standards may be considered during the design of a client interface: resistance, effortlessness, permeability, affordance, consistency, structure, and feedback. *Display designs
Displays are human-made artifacts designed to support the perception of relevant system variables and facilitate further processing of that information. Before a display is designed, the task that the display is intended to support must be defined (e.g., navigating, controlling, decision making, learning, entertaining, etc.). A user or operator must be able to process whatever information a system generates and displays; therefore, the information must be displayed according to principles to support perception, situation awareness, and understanding.Thirteen principles of display design
Christopher Wickens et al. defined 13 principles of display design in their book ''An Introduction to Human Factors Engineering''. These principles of human perception and information processing can be utilized to create an effective display design. A reduction in errors, a reduction in required training time, an increase in efficiency, and an increase in user satisfaction are a few of the many potential benefits that can be achieved by utilizing these principles. Certain principles may not apply to different displays or situations. Some principles may also appear to be conflicting, and there is no simple solution to say that one principle is more important than another. The principles may be tailored to a specific design or situation. Striking a functional balance among the principles is critical for an effective design.Perceptual principles
''1. Make displays legible (or audible)''. A display's legibility is critical and necessary for designing a usable display. If the characters or objects being displayed cannot be discernible, the operator cannot effectively use them. ''2. Avoid absolute judgment limits''. Do not ask the user to determine the level of a variable based on a single sensory variable (e.g., color, size, loudness). These sensory variables can contain many possible levels. ''3. Top-down processing''. Signals are likely perceived and interpreted by what is expected based on a user's experience. If a signal is presented contrary to the user's expectation, more physical evidence of that signal may need to be presented to assure that it is understood correctly. ''4. Redundancy gain''. If a signal is presented more than once, it is more likely to be understood correctly. This can be done by presenting the signal in alternative physical forms (e.g., color and shape, voice and print, etc.), as redundancy does not imply repetition. A traffic light is a good example of redundancy, as color and position are redundant. ''5. Similarity causes confusion: Use distinguishable elements''. Signals that appear to be similar will likely be confused. The ratio of similar features to different features causes signals to be similar. For example, A423B9 is more similar to A423B8 than 92 is to 93. Unnecessarily similar features should be removed, and dissimilar features should be highlighted.Mental model principles
''6. Principle of pictorial realism''. A display should look like the variable that it represents (e.g., the high temperature on a thermometer shown as a higher vertical level). If there are multiple elements, they can be configured in a manner that looks like they would in the represented environment. ''7. Principle of the moving part''. Moving elements should move in a pattern and direction compatible with the user's mental model of how it actually moves in the system. For example, the moving element on an altimeter should move upward with increasing altitude.Principles based on attention
''8. Minimizing information access cost'' or interaction cost. When the user's attention is diverted from one location to another to access necessary information, there is an associated cost in time or effort. A display design should minimize this cost by allowing frequently accessed sources to be located at the nearest possible position. However, adequate legibility should not be sacrificed to reduce this cost. ''9. Proximity compatibility principle''. Divided attention between two information sources may be necessary for the completion of one task. These sources must be mentally integrated and are defined to have close mental proximity. Information access costs should be low, which can be achieved in many ways (e.g., proximity, linkage by common colors, patterns, shapes, etc.). However, close display proximity can be harmful by causing too much clutter. ''10. Principle of multiple resources''. A user can more easily process information across different resources. For example, visual and auditory information can be presented simultaneously rather than presenting all visual or all auditory information.Memory principles
''11. Replace memory with visual information: knowledge in the world''. A user should not need to retain important information solely in working memory or retrieve it from long-term memory. A menu, checklist, or another display can aid the user by easing the use of their memory. However, memory use may sometimes benefit the user by eliminating the need to reference some knowledge globally (e.g., an expert computer operator would rather use direct commands from memory than refer to a manual). The use of knowledge in a user's head and knowledge in the world must be balanced for an effective design. ''12. Principle of predictive aiding''. Proactive actions are usually more effective than reactive actions. A display should eliminate resource-demanding cognitive tasks and replace them with simpler perceptual tasks to reduce the user's mental resources. This will allow the user to focus on current conditions and to consider possible future conditions. An example of a predictive aid is a road sign displaying the distance to a certain destination. ''13. Principle of consistency''. Old habits from other displays will easily transfer to support the processing of new displays if they are designed consistently. A user's long-term memory will trigger actions that are expected to be appropriate. A design must accept this fact and utilize consistency among different displays.Current research
Topics in human–computer interaction include the following:Social computing
Social computing is an interactive and collaborative behavior considered between technology and people. In recent years, there has been an explosion of social science research focusing on interactions as the unit of analysis, as there are a lot of social computing technologies that include blogs, emails, social networking, quick messaging, and various others. Much of this research draws from psychology, social psychology, and sociology. For example, one study found out that people expected a computer with a man's name to cost more than a machine with a woman's name. Other research finds that individuals perceive their interactions with computers more negatively than humans, despite behaving the same way towards these machines.Knowledge-driven human–computer interaction
In human and computer interactions, a semantic gap usually exists between human and computer's understandings towards mutual behaviors.Emotions and human–computer interaction
In the interaction of humans and computers, research has studied how computers can detect, process, and react to human emotions to develop emotionally intelligent information systems. Researchers have suggested several 'affect-detection channels'. The potential of telling human emotions in an automated and digital fashion lies in improvements to the effectiveness of human–computer interaction. The influence of emotions in human–computer interaction has been studied in fields such as financial decision-making using ECG and organizational knowledge sharing usingBrain–computer interfaces
A brain–computer interface (BCI), is a direct communication pathway between an enhanced or wiredSecurity interactions
Security interactions are the study of interaction between humans and computers specifically as it pertains to information security. Its aim, in plain terms, is to improve the usability of security features in end user applications. Unlike HCI, which has roots in the early days of Xerox PARC during the 1970s, HCISec is a nascent field of study by comparison. Interest in this topic tracks with that of Internet security, which has become an area of broad public concern only in very recent years. When security features exhibit poor usability, the following are common reasons: * they were added in casual afterthought * they were hastily patched in to address newly discovered security bugs * they address very complex use cases without the benefit of a software wizard * their interface designers lacked understanding of related security concepts * their interface designers were not usability experts (often meaning they were the application developers themselves)Factors of change
Traditionally, computer use was modeled as a human–computer dyad in which the two were connected by a narrow explicit communication channel, such as text-based terminals. Much work has been done to make the interaction between a computing system and a human more reflective of the multidimensional nature of everyday communication. Because of potential issues, human–computer interaction shifted focus beyond the interface to respond to observations as articulated by D. Engelbart: "If ease of use were the only valid criterion, people would stick to tricycles and never try bicycles." How humans interact with computers continues to evolve rapidly. Human–computer interaction is affected by developments in computing. These forces include: * Decreasing hardware costs leading to larger memory and faster systems * Miniaturization of hardware leading to portability * Reduction in power requirements leading to portability * New display technologies leading to the packaging of computational devices in new forms * Specialized hardware leading to new functions * Increased development of network communication and distributed computing * Increasingly widespread use of computers, especially by people who are outside of the computing profession * Increasing innovation in input techniques (e.g., voice, gesture, pen), combined with lowering cost, leading to rapid computerization by people formerly left out of the ''computer revolution''. * Wider social concerns leading to improved access to computers by currently disadvantaged groups the future for HCI is expected to include the following characteristics: * '' Ubiquitous computing and communication''. Computers are expected to communicate through high-speed local networks, nationally over wide-area networks, and portably via infrared, ultrasonic, cellular, and other technologies. Data and computational services will be portably accessible from many if not most locations to which a user travels. * ''high-functionality systems''. Systems can have large numbers of functions associated with them. There are so many systems that most users, technical or non-technical, do not have time to learn about traditionally (e.g., through thick user manuals). * ''The mass availability of computer graphics''. Computer graphics capabilities such as image processing, graphics transformations, rendering, and interactive animation become widespread as inexpensive chips become available for inclusion in general workstations and mobile devices. * ''Mixed media''. Commercial systems can handle images, voice, sounds, video, text, formatted data. These are exchangeable over communication links among users. The separate consumer electronics fields (e.g., stereo sets, DVD players, televisions) and computers are beginning to merge. Computer and print fields are expected to cross-assimilate. * ''High- bandwidth interaction''. The rate at which humans and machines interact is expected to increase substantially due to the changes in speed, computer graphics, new media, and new input/output devices. This can lead to qualitatively different interfaces, such as virtual reality or computational video. * ''Large and thin displays''. New display technologies are maturing, enabling huge displays and displays that are thin, lightweight, and low in power use. This has large effects on portability and will likely enable developing paper-like, pen-based computer interaction systems very different in feel from present desktop workstations. * ''Information utilities''. Public information utilities (such as home banking and shopping) and specialized industry services (e.g., weather for pilots) are expected to proliferate. The proliferation rate can accelerate with the introduction of high-bandwidth interaction and the improvement in the quality of interfaces.Scientific conferences
One of the main conferences for new research in human–computer interaction is the annually held Association for Computing Machinery's (ACM) '' Conference on Human Factors in Computing Systems'', usually referred to by its short name CHI (pronounced ''kai'', or ''Khai''). CHI is organized by ACM Special Interest Group on Computer-Human Interaction ( SIGCHI). CHI is a large conference, with thousands of attendants, and is quite broad in scope. It is attended by academics, practitioners, and industry people, with company sponsors such as Google, Microsoft, and PayPal. There are also dozens of other smaller, regional, or specialized HCI-related conferences held around the world each year, including: * ACEICFAASRS: ACE – International Conference on Future Applications of AI, Sensors, and Robotics in Society * ASSETS: ACM International Conference on Computers and Accessibility * CSCW: ACM conference on Computer Supported Cooperative Work * CC: Aarhus decennial conference on Critical Computing * CUI: ACM conference on Conversational User Interfaces * DIS: ACM conference on Designing Interactive Systems * ECSCW: European Conference on Computer-Supported Cooperative Work * GROUP: ACM conference on supporting group work * HRI: ACM/IEEE International Conference on Human–robot interaction * HCII: Human–Computer Interaction International * ICMI: International Conference on Multimodal Interfaces * ITS: ACM conference onSee also
* * Outline of human–computer interaction * Information design * Information architecture * User experience design * Mindfulness and technology * CAPTCHA *Footnotes
Further reading
; Academic overviews of the field * Julie A. Jacko (Ed.). (2012). Human–Computer Interaction Handbook (3rd Edition). CRC Press. * Andrew Sears and Julie A. Jacko (Eds.). (2007). Human–Computer Interaction Handbook (2nd Edition). CRC Press. * Julie A. Jacko and Andrew Sears (Eds.). (2003). Human–Computer Interaction Handbook. Mahwah: Lawrence Erlbaum & Associates. ; Historically important classic *External links