In
differential geometry, Huisken's monotonicity formula states that, if an -dimensional surface in -dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
undergoes the
mean curvature flow
In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space). Intuitively, a family of s ...
, then its
convolution
In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution' ...
with an appropriately scaled and time-reversed
heat kernel
In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectr ...
is non-increasing.
[.] The result is named after
Gerhard Huisken
Gerhard Huisken (born 20 May 1958) is a German mathematician whose research concerns differential geometry and partial differential equations. He is known for foundational contributions to the theory of the mean curvature flow, including Huisk ...
, who published it in 1990.
Specifically, the -dimensional time-reversed heat kernel converging to a point at time may be given by the formula
:
Then Huisken's monotonicity formula gives an explicit expression for the
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
of
:
where is the area element of the evolving surface at time . The expression involves the negation of another integral, whose integrand is non-negative, so the derivative is non-positive.
Typically, and are chosen as the time and position of a singularity of the evolving surface, and the monotonicity formula can be used to analyze the behavior of the surface as it evolves towards this singularity. In particular, the only surfaces for which the convolution with the heat kernel remains constant rather than decreasing are ones that stay self-similar as they evolve, and the monotonicity formula can be used to classify these surfaces.
Grigori Perelman
Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
derived analogous formulas for the
Ricci flow
In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be ana ...
.
[.]
References
{{reflist
Differential geometry