Holomorphic Vector Field
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a holomorphic function is a
complex-valued function Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic g ...
of one or more
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
variables that is
complex differentiable In mathematics, a holomorphic function is a complex-valued function of one or Function of several complex variables, more complex number, complex variables that is Differentiable function#Differentiability in complex analysis, complex differ ...
in a
neighbourhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
of each point in a domain in
complex coordinate space In mathematics, the ''n''-dimensional complex coordinate space (or complex ''n''-space) is the set of all ordered ''n''-tuples of complex numbers, also known as ''complex vectors''. The space is denoted \Complex^n, and is the ''n''-fold Cartesia ...
. The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is infinitely differentiable and locally equal to its own
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
(is '' analytic''). Holomorphic functions are the central objects of study in
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
. Though the term ''
analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ...
in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ''regular functions''. A holomorphic function whose domain is the whole
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
is called an
entire function In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any ...
. The phrase "holomorphic at a point " means not just differentiable at , but differentiable everywhere within some close neighbourhood of in the complex plane.


Definition

Given a complex-valued function of a single complex variable, the derivative of at a point in its domain is defined as the limit :f'(z_0) = \lim_ \frac. This is the same definition as for the
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
of a
real function In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an inter ...
, except that all quantities are complex. In particular, the limit is taken as the complex number tends to , and this means that the same value is obtained for any sequence of complex values for that tends to . If the limit exists, is said to be complex differentiable at . This concept of complex differentiability shares several properties with real differentiability: It is
linear In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a '' function'' (or '' mapping''); * linearity of a '' polynomial''. An example of a linear function is the function defined by f(x) ...
and obeys the
product rule In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v ...
,
quotient rule In calculus, the quotient rule is a method of finding the derivative of a function (mathematics), function that is the ratio of two differentiable functions. Let h(x)=\frac, where both and are differentiable and g(x)\neq 0. The quotient rule sta ...
, and
chain rule In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h ...
. A function is holomorphic on an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
if it is ''complex differentiable'' at ''every'' point of . A function is ''holomorphic'' at a point if it is holomorphic on some
neighbourhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
of . A function is ''holomorphic'' on some non-open set if it is holomorphic at every point of . A function may be complex differentiable at a point but not holomorphic at this point. For example, the function \textstyle f(z) = , z, \vphantom^2 = z\bar ''is'' complex differentiable at , but ''is not'' complex differentiable anywhere else, esp. including in no place close to (see the Cauchy–Riemann equations, below). So, it is ''not'' holomorphic at . The relationship between real differentiability and complex differentiability is the following: If a complex function is holomorphic, then and have first partial derivatives with respect to and , and satisfy the
Cauchy–Riemann equations In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin-Louis Cauchy, Augustin Cauchy and Bernhard Riemann, consist of a system of differential equations, system of two partial differential equatio ...
: n three volumes. :\frac = \frac \qquad \mbox \qquad \frac = -\frac\, or, equivalently, the
Wirtinger derivative In complex analysis of one and several complex variables, Wirtinger derivatives (sometimes also called Wirtinger operators), named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of se ...
of with respect to , the
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
of , is zero: :\frac = 0, which is to say that, roughly, is functionally independent from , the complex conjugate of . If continuity is not given, the converse is not necessarily true. A simple converse is that if and have ''continuous'' first partial derivatives and satisfy the Cauchy–Riemann equations, then is holomorphic. A more satisfying converse, which is much harder to prove, is the Looman–Menchoff theorem: if is continuous, and have first partial derivatives (but not necessarily continuous), and they satisfy the Cauchy–Riemann equations, then is holomorphic. An immediate useful consequence of the Cauchy Riemann Equations above is that the complex derivative can be defined explicitly in terms of real partial derivatives. If f(z) is a complex function that is complex differentiable about a point z = x+ iy then (as we did earlier in the article) we can write f(z) = f(x+iy) = u(x,y) + i v(x,y) and then the complex derivative of the function can be written as f'(z) = \frac + i \frac = \frac - i \frac


Terminology

The term ''holomorphic'' was introduced in 1875 by Charles Briot and Jean-Claude Bouquet, two of
Augustin-Louis Cauchy Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
's students, and derives from the Greek ὅλος (''hólos'') meaning "whole", and μορφή (''morphḗ'') meaning "form" or "appearance" or "type", in contrast to the term '' meromorphic'' derived from μέρος (''méros'') meaning "part". A holomorphic function resembles an
entire function In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any ...
("whole") in a domain of the complex plane while a meromorphic function (defined to mean holomorphic except at certain isolated
poles Pole or poles may refer to: People *Poles (people), another term for Polish people, from the country of Poland * Pole (surname), including a list of people with the name * Pole (musician) (Stefan Betke, born 1967), German electronic music artist ...
), resembles a rational fraction ("part") of entire functions in a domain of the complex plane. Cauchy had instead used the term ''synectic''. Today, the term "holomorphic function" is sometimes preferred to "analytic function". An important result in complex analysis is that every holomorphic function is complex analytic, a fact that does not follow obviously from the definitions. The term "analytic" is however also in wide use.


Properties

Because complex differentiation is linear and obeys the product, quotient, and chain rules, the sums, products and compositions of holomorphic functions are holomorphic, and the quotient of two holomorphic functions is holomorphic wherever the denominator is not zero. That is, if functions and are holomorphic in a domain , then so are , , , and . Furthermore, is holomorphic if has no zeros in ; otherwise it is meromorphic. If one identifies with the real plane , then the holomorphic functions coincide with those functions of two real variables with continuous first derivatives which solve the
Cauchy–Riemann equations In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin-Louis Cauchy, Augustin Cauchy and Bernhard Riemann, consist of a system of differential equations, system of two partial differential equatio ...
, a set of two
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s. Every holomorphic function can be separated into its real and imaginary parts , and each of these is a
harmonic function In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f\colon U \to \mathbb R, where is an open subset of that satisfies Laplace's equation, that i ...
on (each satisfies
Laplace's equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties in 1786. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delt ...
), with the harmonic conjugate of . Conversely, every harmonic function on a
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
domain is the real part of a holomorphic function: If is the harmonic conjugate of , unique up to a constant, then is holomorphic. Cauchy's integral theorem implies that the
contour integral In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane. Contour integration is closely related to the calculus of residues, a method of complex analysis. ...
of every holomorphic function along a loop vanishes: :\oint_\gamma f(z)\,\mathrmz = 0. Here is a rectifiable path in a simply connected
complex domain In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
whose start point is equal to its end point, and is a holomorphic function.
Cauchy's integral formula In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary o ...
states that every function holomorphic inside a disk is completely determined by its values on the disk's boundary. Furthermore: Suppose is a complex domain, is a holomorphic function and the closed disk D \equiv \ is completely contained in . Let be the circle forming the boundary of . Then for every in the interior of : :f(a) = \frac \oint_\gamma \frac\,\mathrmz where the contour integral is taken
counter-clockwise Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to ...
. The derivative can be written as a contour integral using Cauchy's differentiation formula: : f'\!(a) = \frac \oint_\gamma \frac\,\mathrmz, for any simple loop positively winding once around , and : f'\!(a) = \lim\limits_ \frac \oint_f(z)\,\mathrm\bar, for
infinitesimal In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
positive loops around . In regions where the first derivative is not zero, holomorphic functions are conformal: they preserve angles and the shape (but not size) of small figures. Every holomorphic function is analytic. That is, a holomorphic function has derivatives of every order at each point in its domain, and it coincides with its own
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
at in a neighbourhood of . In fact, coincides with its Taylor series at in any disk centred at that point and lying within the domain of the function. From an algebraic point of view, the set of holomorphic functions on an open set is a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
and a
complex vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', can be added together and multiplied ("scaled") by numbers called ''scalars''. The operations of vector addition and sc ...
. Additionally, the set of holomorphic functions in an open set is an
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
the open set is connected. In fact, it is a
locally convex topological vector space In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vec ...
, with the seminorms being the suprema on
compact subset In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it ...
s. From a geometric perspective, a function is holomorphic at if and only if its
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The re ...
in a neighbourhood of is equal to for some continuous function . It follows from :0 = \mathrm^2 f = \mathrm(f'\,\mathrmz) = \mathrmf' \wedge \mathrmz that is also proportional to , implying that the derivative is itself holomorphic and thus that is infinitely differentiable. Similarly, implies that any function that is holomorphic on the simply connected region is also integrable on . (For a path from to lying entirely in , define ; in light of the
Jordan curve theorem In topology, the Jordan curve theorem (JCT), formulated by Camille Jordan in 1887, asserts that every ''Jordan curve'' (a plane simple closed curve) divides the plane into an "interior" region Boundary (topology), bounded by the curve (not to be ...
and the
generalized Stokes' theorem In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, is a statement about the integration of differential forms o ...
, is independent of the particular choice of path , and thus is a well-defined function on having or .)


Examples

All
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
functions in with complex
coefficient In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s are
entire function In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any ...
s (holomorphic in the whole complex plane ), and so are the exponential function and the
trigonometric functions In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
and (cf.
Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for ...
). The
principal branch In mathematics, a principal branch is a function which selects one branch point, branch ("slice") of a multi-valued function. Most often, this applies to functions defined on the complex plane. Examples Trigonometric inverses Principal bra ...
of the
complex logarithm In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related: * A complex logarithm of a nonzero complex number z, defined to be ...
function is holomorphic on the domain . The
square root In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
function can be defined as and is therefore holomorphic wherever the logarithm is. The
reciprocal function In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/'' ...
is holomorphic on . (The reciprocal function, and any other
rational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
, is meromorphic on .) As a consequence of the
Cauchy–Riemann equations In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin-Louis Cauchy, Augustin Cauchy and Bernhard Riemann, consist of a system of differential equations, system of two partial differential equatio ...
, any real-valued holomorphic function must be constant. Therefore, the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
the
argument An argument is a series of sentences, statements, or propositions some of which are called premises and one is the conclusion. The purpose of an argument is to give reasons for one's conclusion via justification, explanation, and/or persu ...
, the
real part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
and the
imaginary part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
are not holomorphic. Another typical example of a
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
which is not holomorphic is the
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
(The complex conjugate is antiholomorphic.)


Several variables

The definition of a holomorphic function generalizes to several complex variables in a straightforward way. A function in complex variables is analytic at a point if there exists a neighbourhood of in which is equal to a convergent power series in complex variables; the function is holomorphic in an open subset of if it is analytic at each point in . Osgood's lemma shows (using the multivariate Cauchy integral formula) that, for a continuous function , this is equivalent to being holomorphic in each variable separately (meaning that if any coordinates are fixed, then the restriction of is a holomorphic function of the remaining coordinate). The much deeper Hartogs' theorem proves that the continuity assumption is unnecessary: is holomorphic if and only if it is holomorphic in each variable separately. More generally, a function of several complex variables that is
square integrable In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value ...
over every
compact subset In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it ...
of its domain is analytic if and only if it satisfies the Cauchy–Riemann equations in the sense of distributions. Functions of several complex variables are in some basic ways more complicated than functions of a single complex variable. For example, the region of convergence of a power series is not necessarily an open ball; these regions are logarithmically-convex
Reinhardt domain The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on #The complex coordinate space, the complex coordinate space \mathbb C^n, that is, -tuples of complex numbers. The name of the fiel ...
s, the simplest example of which is a polydisk. However, they also come with some fundamental restrictions. Unlike functions of a single complex variable, the possible domains on which there are holomorphic functions that cannot be extended to larger domains are highly limited. Such a set is called a
domain of holomorphy In mathematics, in the theory of functions of several complex variables, a domain of holomorphy is a domain which is maximal in the sense that there exists a holomorphic function on this domain which cannot be extended to a bigger domain. Forma ...
. A complex differential -form is holomorphic if and only if its antiholomorphic Dolbeault derivative is zero: .


Extension to functional analysis

The concept of a holomorphic function can be extended to the infinite-dimensional spaces of
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
. For instance, the Fréchet or
Gateaux derivative In mathematics, the Gateaux differential or Gateaux derivative is a generalization of the concept of directional derivative in differential calculus. Named after René Gateaux, it is defined for functions between locally convex topological vect ...
can be used to define a notion of a holomorphic function on a
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
over the field of complex numbers.


See also

* Antiderivative (complex analysis) * Antiholomorphic function * Biholomorphy * Cauchy's estimate *
Harmonic map In the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a ...
s * Harmonic morphisms * Holomorphic separability *
Meromorphic function In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are ''poles'' of the function. ...
* Quadrature domains *
Wirtinger derivatives In complex analysis of one and several complex variables, Wirtinger derivatives (sometimes also called Wirtinger operators), named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of se ...


References


Further reading

*


External links

* {{Authority control Analytic functions