Hamilton–Jacobi–Bellman Equation
   HOME

TheInfoList



OR:

In
optimal control theory Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...
, the Hamilton-Jacobi-Bellman (HJB) equation gives a
necessary and sufficient condition In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
for optimality of a control with respect to a
loss function In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "co ...
. It is, in general, a nonlinear
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
in the value function, which means its solution the value function itself. Once this solution is known, it can be used to obtain the optimal control by taking the maximizer (or minimizer) of the Hamiltonian involved in the HJB equation. The equation is a result of the theory of
dynamic programming Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. I ...
which was pioneered in the 1950s by
Richard Bellman Richard Ernest Bellman (August 26, 1920 – March 19, 1984) was an American applied mathematician, who introduced dynamic programming in 1953, and made important contributions in other fields of mathematics, such as biomathematics. He founde ...
and coworkers. The connection to the
Hamilton–Jacobi equation In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechan ...
from classical physics was first drawn by Rudolf Kálmán. In
discrete-time In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "po ...
problems, the corresponding
difference equation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a paramete ...
is usually referred to as the
Bellman equation A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time ...
. While classical variational problems, such as the brachistochrone problem, can be solved using the Hamilton–Jacobi–Bellman equation, the method can be applied to a broader spectrum of problems. Further it can be generalized to
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselve ...
systems, in which case the HJB equation is a second-order elliptic partial differential equation. A major drawback, however, is that the HJB equation admits classical solutions only for a sufficiently smooth value function, which is not guaranteed in most situations. Instead, the notion of a viscosity solution is required, in which conventional derivatives are replaced by (set-valued)
subderivative In mathematics, the subderivative, subgradient, and subdifferential generalize the derivative to convex functions which are not necessarily differentiable. Subderivatives arise in convex analysis, the study of convex functions, often in connection ...
s.


Optimal-control-problems

Consider the following problem in deterministic optimal control over the time period ,T/math>: :V_T(x(0), 0) = \min_u \left\ where C cdot/math> is the scalar cost rate function and D cdot/math> is a function that gives the
bequest value Bequest value, in economics, is the value of satisfaction from preserving a natural environment or a historic environment, in other words natural heritage or cultural heritage for future generations. It is often used when estimating the value of an ...
at the final state, x(t) is the system state vector, x(0) is assumed given, and u(t) for 0 \leq t \leq T is the control vector that we are trying to find. The system must also be subject to : \dot(t)=F (t),u(t)\, where F cdot/math> gives the vector determining physical evolution of the state vector over time.


The partial differential equation

For this simple system (letting V=V_T), the Hamilton–Jacobi–Bellman partial differential equation is : \frac + \min_u \left\ = 0 subject to the terminal condition : V(x,T) = D(x),\, The unknown scalar V(x, t) in the above partial differential equation is the Bellman value function, which represents the cost incurred from starting in state x at time t and controlling the system optimally from then until time T.


Deriving the equation

Intuitively, the HJB equation can be derived as follows. If V(x(t), t) is the optimal cost-to-go function (also called the 'value function'), then by Richard Bellman's principle of optimality, going from time ''t'' to ''t'' + ''dt'', we have : V(x(t), t) = \min_u \left\. Note that the
Taylor expansion In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor se ...
of the first term on the right-hand side is : V(x(t+dt), t+dt) = V(x(t), t) + \frac \, dt + \frac \cdot \dot(t) \, dt + \mathcal(dt), where \mathcal(dt) denotes the terms in the Taylor expansion of higher order than one in little-''o'' notation. Then if we subtract V(x(t), t) from both sides, divide by ''dt'', and take the limit as ''dt'' approaches zero, we obtain the HJB equation defined above.


Solving the equation

The HJB equation is usually solved backwards in time, starting from t = T and ending at t = 0. When solved over the whole of state space and V(x) is continuously differentiable, the HJB equation is a
necessary and sufficient condition In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
for an optimum when the terminal state is unconstrained. If we can solve for V then we can find from it a control u that achieves the minimum cost. In general case, the HJB equation does not have a classical (smooth) solution. Several notions of generalized solutions have been developed to cover such situations, including viscosity solution (
Pierre-Louis Lions Pierre-Louis Lions (; born 11 August 1956) is a French mathematician. He is known for a number of contributions to the fields of partial differential equations and the calculus of variations. He was a recipient of the 1994 Fields Medal and the 199 ...
and Michael Crandall), minimax solution (), and others. Approximate dynamic programming has been introduced by D. P. Bertsekas and J. N. Tsitsiklis with the use of
artificial neural network Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains. An ANN is based on a collection of connected units ...
s (
multilayer perceptron A multilayer perceptron (MLP) is a fully connected class of feedforward artificial neural network (ANN). The term MLP is used ambiguously, sometimes loosely to mean ''any'' feedforward ANN, sometimes strictly to refer to networks composed of mul ...
s) for approximating the Bellman function in general. This is an effective mitigation strategy for reducing the impact of dimensionality by replacing the memorization of the complete function mapping for the whole space domain with the memorization of the sole neural network parameters. In particular, for continuous-time systems, an approximate dynamic programming approach that combines both policy iterations with neural networks was introduced. In discrete-time, an approach to solve the HJB equation combining value iterations and neural networks was introduced. Alternatively, it has been shown that
sum-of-squares optimization A sum-of-squares optimization program is an optimization problem with a linear cost function and a particular type of constraint on the decision variables. These constraints are of the form that when the decision variables are used as coefficient ...
can yield an approximate polynomial solution to the Hamilton-Jacobi-Bellman equation arbitrarily well with respect to the L^1 norm.


Extension to stochastic problems

The idea of solving a control problem by applying Bellman's principle of optimality and then working out backwards in time an optimizing strategy can be generalized to stochastic control problems. Consider similar as above : \min_u \mathbb E \left\ now with (X_t)_\,\! the stochastic process to optimize and (u_t)_\,\! the steering. By first using Bellman and then expanding V(X_t,t) with Itô's rule, one finds the stochastic HJB equation : \min_u \left\ = 0, where \mathcal represents the stochastic differentiation operator, and subject to the terminal condition : V(x,T) = D(x)\,\!. Note that the randomness has disappeared. In this case a solution V\,\! of the latter does not necessarily solve the primal problem, it is a candidate only and a further verifying argument is required. This technique is widely used in Financial Mathematics to determine optimal investment strategies in the market (see for example Merton's portfolio problem).


Application to LQG-Control

As an example, we can look at a system with linear stochastic dynamics and quadratic cost. If the system dynamics is given by : dx_t = (a x_t + b u_t) dt + \sigma dw_t, and the cost accumulates at rate C(x_t,u_t) = r(t) u_t^2/2 + q(t) x_t^2/2, the HJB equation is given by : -\frac = \fracq(t) x^2 + \frac a x - \frac \left(\frac\right)^2 + \frac \frac. with optimal action given by : u_t = -\frac\frac Assuming a quadratic form for the value function, we obtain the usual
Riccati equation In mathematics, a Riccati equation in the narrowest sense is any first-order ordinary differential equation that is quadratic in the unknown function. In other words, it is an equation of the form : y'(x) = q_0(x) + q_1(x) \, y(x) + q_2(x) \, y^2(x ...
for the Hessian of the value function as is usual for Linear-quadratic-Gaussian control.


See also

*
Bellman equation A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time ...
, discrete-time counterpart of the Hamilton–Jacobi–Bellman equation. * Pontryagin's maximum principle, necessary but not sufficient condition for optimum, by maximizing a Hamiltonian, but this has the advantage over HJB of only needing to be satisfied over the single trajectory being considered.


References


Further reading

* * * {{DEFAULTSORT:Hamilton-Jacobi-Bellman equation Partial differential equations Optimal control Dynamic programming Stochastic control William Rowan Hamilton