HOME

TheInfoList



OR:

In mathematics, the Halpern–Läuchli theorem is a partition result about finite products of infinite
trees In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are ...
. Its original purpose was to give a model for
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
in which the
Boolean prime ideal theorem In mathematics, the Boolean prime ideal theorem states that ideals in a Boolean algebra can be extended to prime ideals. A variation of this statement for filters on sets is known as the ultrafilter lemma. Other theorems are obtained by consid ...
is true but the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
is false. It is often called the Halpern–Läuchli theorem, but the proper attribution for the theorem as it is formulated below is to Halpern–Läuchli–Laver–Pincus or HLLP (named after James D. Halpern, Hans Läuchli,
Richard Laver Richard Joseph Laver (October 20, 1942 – September 19, 2012) was an American mathematician, working in set theory. Biography Laver received his PhD at the University of California, Berkeley in 1969, under the supervision of Ralph McKenzie, wi ...
, and David Pincus), following . Let ''d'',''r'' < ω, \langle T_i: i \in d \rangle be a sequence of finitely splitting trees of height ω. Let :\bigcup_ \left(\prod_T_i(n)\right) = C_1 \cup \cdots \cup C_r, then there exists a sequence of subtrees \langle S_i: i \in d \rangle strongly embedded in \langle T_i: i \in d \rangle such that :\bigcup_ \left(\prod_S_i(n)\right) \subset C_k\textk \le r. Alternatively, let : S^d_ = \bigcup_ \left(\prod_T_i(n)\right) and : \mathbb^d=\bigcup_ S^d_.. The HLLP theorem says that not only is the collection \mathbb^d
partition regular In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets. Given a set X, a collection of subsets \mathbb \subset \mathcal(X) is called ''partition regular'' if every set ''A'' in the co ...
for each ''d'' < ''ω'', but that the homogeneous subtree guaranteed by the theorem is strongly embedded in :T= \langle T_i: i \in d \rangle.


References

* * * * {{DEFAULTSORT:Halpern-Lauchli theorem Ramsey theory Theorems in the foundations of mathematics Trees (set theory)