HOME

TheInfoList



OR:

Geometric function theory is the study of
geometric Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
properties of
analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex an ...
s. A fundamental result in the theory is the
Riemann mapping theorem In complex analysis, the Riemann mapping theorem states that if ''U'' is a non-empty simply connected space, simply connected open set, open subset of the complex plane, complex number plane C which is not all of C, then there exists a biholomorphy ...
.


Topics in geometric function theory

The following are some of the most important topics in geometric function theory:


Conformal maps

A conformal map is a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
which preserves
angle In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle. Angles formed by two ...
s locally. In the most common case the function has a
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
and
range Range may refer to: Geography * Range (geographic), a chain of hills or mountains; a somewhat linear, complex mountainous or hilly area (cordillera, sierra) ** Mountain range, a group of mountains bordered by lowlands * Range, a term used to i ...
in the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
. More formally, a map, : f: U \rightarrow V\qquad with U,V \subset \mathbb^n is called conformal (or angle-preserving) at a point u_0 if it preserves oriented angles between
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
s through u_0 with respect to their
orientation Orientation may refer to: Positioning in physical space * Map orientation, the relationship between directions on a map and compass directions * Orientation (housing), the position of a building with respect to the sun, a concept in building de ...
(i.e., not just the magnitude of the angle). Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
.


Quasiconformal maps

In mathematical
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
, a quasiconformal mapping, introduced by and named by , is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
. Intuitively, let ''f'' : ''D'' → ''D''′ be an
orientation Orientation may refer to: Positioning in physical space * Map orientation, the relationship between directions on a map and compass directions * Orientation (housing), the position of a building with respect to the sun, a concept in building de ...
-preserving
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
between
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suf ...
s in the plane. If ''f'' is
continuously differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
, then it is ''K''-quasiconformal if the derivative of ''f'' at every point maps circles to ellipses with eccentricity bounded by ''K''. If ''K'' is 0, then the function is conformal.


Analytic continuation

Analytic continuation is a technique to extend the
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
of a given
analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex an ...
. Analytic continuation often succeeds in defining further values of a function, for example in a new region where an
infinite series In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, math ...
representation in terms of which it is initially defined becomes divergent. The step-wise continuation technique may, however, come up against difficulties. These may have an essentially topological nature, leading to inconsistencies (defining more than one value). They may alternatively have to do with the presence of
mathematical singularities In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity. For exa ...
. The case of
several complex variables The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variable ...
is rather different, since singularities then cannot be isolated points, and its investigation was a major reason for the development of
sheaf cohomology In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when i ...
.


Geometric properties of polynomials and algebraic functions

Topics in this area include Riemann surfaces for algebraic functions and zeros for algebraic functions.


Riemann surface

A Riemann surface, first studied by and named after
Bernhard Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rig ...
, is a one-dimensional
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ...
. Riemann surfaces can be thought of as deformed versions of the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
: locally near every point they look like patches of the complex plane, but the global
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
can be quite different. For example, they can look like a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
or a
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
or several sheets glued together. The main point of Riemann surfaces is that
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
s may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially
multi-valued function In mathematics, a multivalued function, also called multifunction, many-valued function, set-valued function, is similar to a function, but may associate several values to each input. More precisely, a multivalued function from a domain to a ...
s such as the
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . E ...
and other
algebraic function In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations additio ...
s, or the
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...
.


Extremal problems

Topics in this area include "Maximum principle; Schwarz's lemma, Lindelöf principle, analogues and generalizations".MSC80 in the MSC classification system


Univalent and multivalent functions

A
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
on an
open subset In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suff ...
of the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
is called univalent if it is
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
. One can prove that if G and \Omega are two open
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
sets in the complex plane, and :f: G \to \Omega is a univalent function such that f(G) = \Omega (that is, f is
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
), then the derivative of f is never zero, f is
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is ...
, and its inverse f^ is also holomorphic. More, one has by the
chain rule In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , ...
Alternate terms in common use are ''schlicht''( this is German for plain, simple) and ''simple''. It is a remarkable fact, fundamental to the theory of univalent functions, that univalence is essentially preserved under uniform convergence.


Important theorems


Riemann mapping theorem

Let z_0 be a point in a simply-connected region D_1 (D_1 \neq \mathbb) and D_1 having at least two boundary points. Then there exists a unique analytic function w=f(z) mapping D_1 bijectively into the open unit disk , w, < 1 such that f(z_0)=0 and f'(z_0) > 0. Although Riemann's mapping theorem demonstrates the existence of a mapping function, it does not actually ''exhibit'' this function. An example is given below. In the above figure, consider D_1 and D_2 as two simply connected regions different from \mathbb C. The
Riemann mapping theorem In complex analysis, the Riemann mapping theorem states that if ''U'' is a non-empty simply connected space, simply connected open set, open subset of the complex plane, complex number plane C which is not all of C, then there exists a biholomorphy ...
provides the existence of w=f(z) mapping D_1 onto the unit disk and existence of w=g(z) mapping D_2 onto the unit disk. Thus g^f is a one-to-one mapping of D_1 onto D_2. If we can show that g^, and consequently the composition, is analytic, we then have a conformal mapping of D_1 onto D_2, proving "any two simply connected regions different from the whole plane \mathbb C can be mapped conformally onto each other."


Schwarz's Lemma

The Schwarz lemma, named after
Hermann Amandus Schwarz Karl Hermann Amandus Schwarz (; 25 January 1843 – 30 November 1921) was a German mathematician, known for his work in complex analysis. Life Schwarz was born in Hermsdorf, Silesia (now Jerzmanowa, Poland). In 1868 he married Marie Kumme ...
, is a result in
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
about
holomorphic functions In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivati ...
from the
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gotthard album), 1999 * ''Open'' (Cowboy Junkies album), 2001 * ''Open'' (YF ...
unit disk In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose di ...
to itself. The lemma is less celebrated than stronger theorems, such as the
Riemann mapping theorem In complex analysis, the Riemann mapping theorem states that if ''U'' is a non-empty simply connected space, simply connected open set, open subset of the complex plane, complex number plane C which is not all of C, then there exists a biholomorphy ...
, which it helps to prove. It is however one of the simplest results capturing the rigidity of holomorphic functions.


Statement

Schwarz Lemma. Let D = be the open
unit disk In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose di ...
in the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
C centered at the
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * Origin (comics), ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * The Origin (Buffy comic), ''The Origin'' (Bu ...
and let ''f'' : D → D be a
holomorphic map In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivat ...
such that ''f''(0) = 0. Then, , ''f''(''z''), ≤ , ''z'', for all ''z'' in D and , ''f′''(0), ≤ 1. Moreover, if , ''f''(''z''), = , ''z'', for some non-zero ''z'' or if , ''f′''(0), = 1, then ''f''(''z'') = ''az'' for some ''a'' in C with , ''a'', (necessarily) equal to 1.


Maximum principle

The
maximum principle In the mathematical fields of partial differential equations and geometric analysis, the maximum principle is any of a collection of results and techniques of fundamental importance in the study of elliptic and parabolic differential equations. ...
is a property of solutions to certain
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
, of the
elliptic In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
and parabolic types. Roughly speaking, it says that the
maximum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
of a function in a
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
is to be found on the boundary of that domain. Specifically, the ''strong'' maximum principle says that if a function achieves its maximum in the interior of the domain, the function is uniformly a constant. The ''weak'' maximum principle says that the maximum of the function is to be found on the boundary, but may re-occur in the interior as well. Other, even weaker maximum principles exist which merely bound a function in terms of its maximum on the boundary.


Riemann-Hurwitz formula

the Riemann–Hurwitz formula, named after
Bernhard Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rig ...
and
Adolf Hurwitz Adolf Hurwitz (; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, analysis, geometry and number theory. Early life He was born in Hildesheim, then part of the Kingdom of Hanover, to a Jewish family and died ...
, describes the relationship of the
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space ...
s of two
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
s when one is a ''ramified covering'' of the other. It therefore connects ramification with
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, in this case. It is a prototype result for many others, and is often applied in the theory of
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
s (which is its origin) and
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
s.


Statement

For an
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
surface ''S'' the Euler characteristic χ(''S'') is :2-2g \, where ''g'' is the
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In the hierarchy of biological classification, genus com ...
(the ''number of handles''), since the
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
s are 1, 2''g'', 1, 0, 0, ... . In the case of an (''unramified'')
covering map A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete sp ...
of surfaces :\pi:S' \to S \, that is surjective and of degree ''N'', we should have the formula :\chi(S') = N\cdot\chi(S). \, That is because each simplex of ''S'' should be covered by exactly ''N'' in ''S''′ — at least if we use a fine enough
triangulation In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points. Applications In surveying Specifically in surveying, triangulation involves only angle me ...
of ''S'', as we are entitled to do since the Euler characteristic is a
topological invariant In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
. What the Riemann–Hurwitz formula does is to add in a correction to allow for ramification (''sheets coming together''). Now assume that ''S'' and ''S′'' are
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
s, and that the map π is
complex analytic Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebrai ...
. The map π is said to be ''ramified'' at a point ''P'' in ''S''′ if there exist analytic coordinates near ''P'' and π(''P'') such that π takes the form π(''z'') = ''z''''n'', and ''n'' > 1. An equivalent way of thinking about this is that there exists a small neighborhood ''U'' of ''P'' such that π(''P'') has exactly one preimage in ''U'', but the image of any other point in ''U'' has exactly ''n'' preimages in ''U''. The number ''n'' is called the ''
ramification index In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as ...
at P'' and also denoted by ''e''''P''. In calculating the Euler characteristic of ''S''′ we notice the loss of ''eP'' − 1 copies of ''P'' above π(''P'') (that is, in the inverse image of π(''P'')). Now let us choose triangulations of ''S'' and ''S′'' with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics. Then ''S′'' will have the same number of ''d''-dimensional faces for ''d'' different from zero, but fewer than expected vertices. Therefore, we find a "corrected" formula :\chi(S') = N\cdot\chi(S) - \sum_ (e_P -1) (all but finitely many ''P'' have ''eP'' = 1, so this is quite safe). This formula is known as the ''Riemann–Hurwitz formula'' and also as Hurwitz's theorem.


References

* Hurwitz-Courant, ''Vorlesunger über allgemeine Funcktionen Theorie'', 1922 (4th ed.,appendix by H. Röhrl, vol. 3, ''Grundlehren der mathematischen Wissenschaften''. Springer, 1964.) * * *{{cite book , isbn = 978-0821852705 , title = Conformal Invariants: Topics in Geometric Function Theory , last1 = Ahlfors , first1 = Lars , year = 2010 , publisher = AMS Chelsea Publishing *