Grün's Lemma
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, more specifically in
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
is said to be perfect if it equals its own
commutator subgroup In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal ...
, or equivalently, if the group has no
non-trivial In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or a particularly simple object possessing a given structure (e.g., group, topological space). The noun triviality usual ...
abelian quotients.


Examples

The smallest (non-trivial) perfect group is the
alternating group In mathematics, an alternating group is the Group (mathematics), group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted ...
''A''5. More generally, any non-abelian
simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The d ...
is perfect since the commutator subgroup is a
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
with abelian quotient. However, a perfect group need not be simple; for example, the
special linear group In mathematics, the special linear group \operatorname(n,R) of degree n over a commutative ring R is the set of n\times n Matrix (mathematics), matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix ...
over the
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
with 5 elements, SL(2,5) (or the
binary icosahedral group In mathematics, the binary icosahedral group 2''I'' or Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST is a certain nonabelian group of order 120. It is an extension of the icosahedral group ''I'' or (2,3,5) o ...
, which is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to it) is perfect but not simple (it has a non-trivial center containing -\!\left(\begin1 & 0 \\ 0 & 1\end\right) = \left(\begin4 & 0 \\ 0 & 4\end\right)). The
direct product In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
of any two simple non-abelian groups is perfect but not simple; the commutator of two elements is ''a'',''b''),(''c'',''d'')= ( 'a'',''c'' 'b'',''d''. Since commutators in each simple group form a generating set, pairs of commutators form a generating set of the direct product. The fundamental group of SO(3)/I_ is a perfect group of order 120. More generally, a
quasisimple group In mathematics, a quasisimple group (also known as a covering group) is a group that is a perfect central extension ''E'' of a simple group ''S''. In other words, there is a short exact sequence :1 \to Z(E) \to E \to S \to 1 such that E = , E ...
(a perfect central extension of a simple group) that is a non-trivial extension (and therefore not a simple group itself) is perfect but not simple; this includes all the
insoluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solub ...
non-simple finite special linear groups SL(''n'',''q'') as extensions of the
projective special linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associa ...
PSL(''n'',''q'') (SL(2,5) is an extension of PSL(2,5), which is isomorphic to ''A''5). Similarly, the special linear group over the real and
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
numbers is perfect, but the general linear group GL is never perfect (except when trivial or over \mathbb_2, where it equals the special linear group), as the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
gives a non-trivial abelianization and indeed the commutator subgroup is SL. A non-trivial perfect group, however, is necessarily not solvable; and 4
divides In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
its
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
(if finite), moreover, if 8 does not divide the order, then 3 does. Every
acyclic group In mathematics, an acyclic space is a nonempty topological space ''X'' in which cycles are always boundaries, in the sense of homology theory. This implies that integral homology groups in all dimensions of ''X'' are isomorphic to the correspondin ...
is perfect, but the converse is not true: ''A''5 is perfect but not acyclic (in fact, not even superperfect), see . In fact, for n\ge 5 the alternating group A_n is perfect but not superperfect, with H_2(A_n,\Z) = \Z/2 for n \ge 8. Any quotient of a perfect group is perfect. A non-trivial finite perfect group that is not simple must then be an extension of at least one smaller simple non-abelian group. But it can be the extension of more than one simple group. In fact, the direct product of perfect groups is also perfect. Every perfect group ''G'' determines another perfect group ''E'' (its
universal central extension In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group H_2(G, \Z) of a group ''G''. It was introduced by in his work on projective representations. Examples and properties The Schur multiplier \op ...
) together with a
surjection In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
''f'': ''E'' → ''G'' whose
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learnin ...
is in the center of ''E,'' such that ''f'' is universal with this property. The kernel of ''f'' is called the
Schur multiplier In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group H_2(G, \Z) of a group ''G''. It was introduced by in his work on projective representations. Examples and properties The Schur multiplier \ope ...
of ''G'' because it was first studied by
Issai Schur Issai Schur (10 January 1875 – 10 January 1941) was a Russian mathematician who worked in Germany for most of his life. He studied at the Humboldt University of Berlin, University of Berlin. He obtained his doctorate in 1901, became lecturer i ...
in 1904; it is isomorphic to the
homology group In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
H_2(G). In the plus construction of
algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sens ...
, if we consider the group \operatorname(A) = \text \operatorname_n(A) for a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
A, then the
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of elementary matrices E(R) forms a perfect subgroup.


Ore's conjecture

As the commutator subgroup is ''generated'' by commutators, a perfect group may contain elements that are products of commutators but not themselves commutators.
Øystein Ore Øystein Ore (7 October 1899 – 13 August 1968) was a Norwegian mathematician known for his work in ring theory, Galois connections, graph theory, and the history of mathematics. Life Ore graduated from the University of Oslo in 1922, with a ...
showed in 1951 that the alternating groups on five or more elements contained only commutators, and
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), ha ...
d that this was so for all the finite non-abelian simple groups. Ore's conjecture was finally
proven Proven is a rural village in the Belgian province of West Flanders, and a "deelgemeente" of the municipality Poperinge. The village has about 1400 inhabitants. The church and parish A parish is a territorial entity in many Christianity, Chr ...
in 2008. The proof relies on the
classification theorem In mathematics, a classification theorem answers the classification problem: "What are the objects of a given type, up to some equivalence?". It gives a non-redundant enumeration: each object is equivalent to exactly one class. A few issues rela ...
.


Grün's lemma

A basic fact about perfect groups is Grün's lemma , due to Otto Grün: the
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
of a perfect group by its center is centerless (has trivial center).
Proof: If ''G'' is a perfect group, let ''Z''1 and ''Z''2 denote the first two terms of the upper central series of ''G'' (i.e., ''Z''1 is the center of ''G'', and ''Z''2/''Z''1 is the center of ''G''/''Z''1). If ''H'' and ''K'' are subgroups of ''G'', denote the
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
of ''H'' and ''K'' by 'H'', ''K''and note that 'Z''1, ''G''= 1 and 'Z''2, ''G''⊆ ''Z''1, and consequently (the convention that 'X'', ''Y'', ''Z''= ''X'', ''Y'' ''Z''] is followed): : _2,G,G Z_2,GG]\subseteq _1,G1 : ,Z_2,G G,Z_2G]= Z_2,GG]\subseteq _1,G1. By the
three subgroups lemma In mathematics, more specifically group theory, the three subgroups lemma is a result concerning commutators. It is a consequence of Philip Hall and Ernst Witt's eponymous identity. Notation In what follows, the following notation will be employed ...
(or equivalently, by the Hall-Witt identity), it follows that 'G'', ''Z''2= ''G'', ''G'' ''Z''2] = 'G'', ''G'', ''Z''2= . Therefore, ''Z''2 ⊆ ''Z''1 = ''Z''(''G''), and the center of the quotient group ''G'' / ''Z''(''G'') is the
trivial group In mathematics, a trivial group or zero group is a group that consists of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usu ...
.
As a consequence, all higher centers (that is, higher terms in the upper central series) of a perfect group equal the center.


Group homology

In terms of group homology, a perfect group is precisely one whose first homology group vanishes: ''H''1(''G'', Z) = 0, as the first homology group of a group is exactly the abelianization of the group, and perfect means trivial abelianization. An advantage of this definition is that it admits strengthening: * A
superperfect group In mathematics, in the realm of group theory, a group is said to be superperfect when its first two homology groups are trivial: ''H''1(''G'', Z) = ''H''2(''G'', Z) = 0. This is stronger than a perfect group, which is one whose first homology gro ...
is one whose first two homology groups vanish: H_1(G,\Z)=H_2(G,\Z)=0. * An
acyclic group In mathematics, an acyclic space is a nonempty topological space ''X'' in which cycles are always boundaries, in the sense of homology theory. This implies that integral homology groups in all dimensions of ''X'' are isomorphic to the correspondin ...
is one ''all'' of whose (reduced) homology groups vanish \tilde H_i(G;\Z) = 0. (This is equivalent to all homology groups other than H_0 vanishing.)


Quasi-perfect group

Especially in the field of
algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sens ...
, a group is said to be quasi-perfect if its commutator subgroup is perfect; in symbols, a quasi-perfect group is one such that ''G''(1) = ''G''(2) (the commutator of the commutator subgroup is the commutator subgroup), while a perfect group is one such that ''G''(1) = ''G'' (the commutator subgroup is the whole group). See and .


Notes


References

* * * * *


External links

* * {{MathWorld, urlname=GruensLemma, title=Grün's lemma Properties of groups Lemmas