HOME

TheInfoList



OR:

The grown-junction transistor was the first type of bipolar ''junction'' transistor made. It was invented by
William Shockley William Bradford Shockley ( ; February 13, 1910 – August 12, 1989) was an American solid-state physicist, electrical engineer, and inventor. He was the manager of a research group at Bell Labs that included John Bardeen and Walter Houser Brat ...
at
Bell Labs Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
on June 23, 1948 (patent filed June 26, 1948), six months after the first bipolar
point-contact transistor The point-contact transistor was the first type of transistor to be successfully demonstrated. It was developed by research scientists John Bardeen and Walter Brattain at Bell Laboratories in December 1947. They worked in a group led by phys ...
. The first
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
prototypes were made in 1949. Bell Labs announced Shockley’s grown-junction transistor on July 4, 1951. An NPN grown-junction transistor is made of a single
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
of
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
material which has two PN junctions grown into it. During the growth process, a
seed crystal A seed crystal is a small piece of single crystal or polycrystal material from which a large crystal of typically the same material is grown in a laboratory. Used to replicate material, the use of seed crystal to promote growth avoids the otherwi ...
is slowly pulled from a bath of molten semiconductor, which then grows into a rod-shaped crystal ( boule). The molten semiconductor is doped N-type at the start. At a predetermined moment in the growth process a small pellet of a P-type
dopant A dopant (also called a doping agent) is a small amount of a substance added to a material to alter its physical properties, such as electrical or optics, optical properties. The amount of dopant is typically very low compared to the material b ...
is added, almost immediately followed by a somewhat larger pellet of an N-type dopant. These dopants dissolve in the molten semiconductor changing the type of semiconductor subsequently grown. The resulting crystal has a thin layer of P-type material sandwiched between sections of N-type material. This P-type layer may be as little as a thousandth of an inch (25 μm) thick. The crystal is sliced, leaving the thin P-type layer in the center of the slice, then cut into bars. Each bar is made into a transistor by
soldering Soldering (; ) is a process of joining two metal surfaces together using a filler metal called solder. The soldering process involves heating the surfaces to be joined and melting the solder, which is then allowed to cool and solidify, creatin ...
its N-type ends to supporting and conducting leads, then
welding Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melting, melt the parts together and allow them to cool, causing Fusion welding, fusion. Co ...
a very fine
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
lead to the central P-type layer, and finally encasing in a hermetically sealed can. A similar process, using the opposite dopants, makes a PNP grown-junction transistor. The most difficult part of this process is welding the gold wire to the base layer, as the wire may have a larger diameter than the thickness of the base. To facilitate this operation, the gold wire is pointed or flattened until the end is thinner than the base layer. The tip of the gold wire is slid along the bar until electrical resistance measurement shows it is in contact with the base layer. At this time a pulse of current is applied, welding the wire in place. Unfortunately sometimes the weld is too large or slightly off center in the base layer. To avoid shorting the transistor, the gold wire is alloyed with a small amount of the same type dopant as used in the base. This causes the base layer to become slightly thicker at the point of the weld. Grown-junction transistors rarely operated at frequencies above the audio range, due to their relatively thick base layers. Growing thin base layers was very hard to control and welding the wire to the base became harder the thinner it got. Higher-frequency operation could be obtained by welding a second wire on the opposite side of the base, making a tetrode transistor, and using special biasing on this second base connection.


See also

* Alloy-junction transistor


References


External links


A History of the Invention of the Transistor and Where It Will Lead Us
(PDF) Figure 4 shows first grown junction transistor. {{DEFAULTSORT:Grown-Junction Transistor Transistor types