HOME

TheInfoList



OR:

In mathematics, the Goodwin–Staton integral is defined as : Frank William John Olver (ed.), N. M. Temme (Chapter contr.), NIST Handbook of Mathematical Functions, Chapter 7, p160,
Cambridge University Press Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessme ...
2010
: G(z)=\int_0^\infty \frac \, dt The integral satisfies the following third-order nonlinear differential equation: : 4w(z) +8\,z \frac w (z) + (2+2\,z^2) \frac w (z) +z \frac w \left( z \right) =0


Properties

Symmetry: : G(-z)=-G(z) Expansion for small ''z'': : \begin G(z) = & 1-\gamma-\ln(z^2) -i\operatorname ( iz^2) \pi +\frac z \\ pt& \qquad + (-2 + \gamma + \ln(z^2) +i \operatorname (iz^2) \pi \Big) z^2 - \frac z^3 \\ pt& \qquad + \left( \frac 5 4 - \frac 1 2 \gamma - \frac 1 2 \ln (z^2) - \frac 1 2 i \operatorname ( iz^2) \pi \right) z^4 + O (z^5) \end


References

* http://journals.cambridge.org/article_S0013091504001087 * * http://dlmf.nist.gov/7.2 * https://web.archive.org/web/20150225035306/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158).html * https://web.archive.org/web/20150225105452/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158)/export.html * http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_02.pdf * F. W. J. Olver, Werner Rheinbolt, Academic Press, 2014, Mathematics,''Asymptotics and Special Functions'', 588 pages,
gbook
{{DEFAULTSORT:Goodwin-Staton integral Special functions