HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, geometric topology is the study of
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s and
maps A map is a symbolic depiction of interrelationships, commonly spatial, between things within a space. A map may be annotated with text and graphics. Like any graphic, a map may be fixed to paper or other durable media, or may be displayed on ...
between them, particularly
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
s of one manifold into another.


History

Geometric topology as an area distinct from
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
may be said to have originated in the 1935 classification of
lens space A lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions. In the 3-manifold case, a lens space can be visualized ...
s by Reidemeister torsion, which required distinguishing spaces that are
homotopy equivalent In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A ...
but not
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
. This was the origin of ''simple'' homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently.


Differences between low-dimensional and high-dimensional topology

Manifolds differ radically in behavior in high and low dimension. High-dimensional topology refers to manifolds of dimension 5 and above, or in relative terms, embeddings in
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
3 and above.
Low-dimensional topology In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the theory of 3-manifolds and 4-manifolds, knot theory, ...
is concerned with questions in dimensions up to 4, or embeddings in codimension up to 2. Dimension 4 is special, in that in some respects (topologically), dimension 4 is high-dimensional, while in other respects (differentiably), dimension 4 is low-dimensional; this overlap yields phenomena exceptional to dimension 4, such as exotic differentiable structures on R4. Thus the topological classification of 4-manifolds is in principle tractable, and the key questions are: does a topological manifold admit a differentiable structure, and if so, how many? Notably, the smooth case of dimension 4 is the last open case of the
generalized Poincaré conjecture In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold that is a homotopy sphere a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differen ...
; see Gluck twists. The distinction is because
surgery theory In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while An ...
works in dimension 5 and above (in fact, in many cases, it works topologically in dimension 4, though this is very involved to prove), and thus the behavior of manifolds in dimension 5 and above may be studied using the surgery theory program. In dimension 4 and below (topologically, in dimension 3 and below), surgery theory does not work. Indeed, one approach to discussing low-dimensional manifolds is to ask "what would surgery theory predict to be true, were it to work?" – and then understand low-dimensional phenomena as deviations from this. The precise reason for the difference at dimension 5 is because the
Whitney embedding theorem In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney: *The strong Whitney embedding theorem states that any smooth real - dimensional manifold (required also to be Hausdorf ...
, the key technical trick which underlies surgery theory, requires 2+1 dimensions. Roughly, the Whitney trick allows one to "unknot" knotted spheres – more precisely, remove self-intersections of immersions; it does this via a
homotopy In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. ...
of a disk – the disk has 2 dimensions, and the homotopy adds 1 more – and thus in codimension greater than 2, this can be done without intersecting itself; hence embeddings in codimension greater than 2 can be understood by surgery. In surgery theory, the key step is in the middle dimension, and thus when the middle dimension has codimension more than 2 (loosely, 2½ is enough, hence total dimension 5 is enough), the Whitney trick works. The key consequence of this is Smale's ''h''-cobordism theorem, which works in dimension 5 and above, and forms the basis for surgery theory. A modification of the Whitney trick can work in 4 dimensions, and is called Casson handles – because there are not enough dimensions, a Whitney disk introduces new kinks, which can be resolved by another Whitney disk, leading to a sequence ("tower") of disks. The limit of this tower yields a topological but not differentiable map, hence surgery works topologically but not differentiably in dimension 4.


Important tools in geometric topology


Fundamental group

In all dimensions, the
fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
of a manifold is a very important invariant, and determines much of the structure; in dimensions 1, 2 and 3, the possible fundamental groups are restricted, while in dimension 4 and above every
finitely presented group In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and ...
is the fundamental group of a manifold (note that it is sufficient to show this for 4- and 5-dimensional manifolds, and then to take products with spheres to get higher ones).


Orientability

A manifold is orientable if it has a consistent choice of
orientation Orientation may refer to: Positioning in physical space * Map orientation, the relationship between directions on a map and compass directions * Orientation (housing), the position of a building with respect to the sun, a concept in building des ...
, and a connected orientable manifold has exactly two different possible orientations. In this setting, various equivalent formulations of orientability can be given, depending on the desired application and level of generality. Formulations applicable to general topological manifolds often employ methods of
homology theory In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
, whereas for
differentiable manifolds In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
more structure is present, allowing a formulation in terms of
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications ...
s. An important generalization of the notion of orientability of a space is that of orientability of a family of spaces parameterized by some other space (a
fiber bundle In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
) for which an orientation must be selected in each of the spaces which varies continuously with respect to changes in the parameter values.


Handle decompositions

A handle decomposition of an ''m''-
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
''M'' is a union :\emptyset = M_ \subset M_0 \subset M_1 \subset M_2 \subset \dots \subset M_ \subset M_m = M where each M_i is obtained from M_ by the attaching of i-handles. A handle decomposition is to a manifold what a CW-decomposition is to a topological space—in many regards the purpose of a handle decomposition is to have a language analogous to CW-complexes, but adapted to the world of
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
s. Thus an ''i''-handle is the smooth analogue of an ''i''-cell. Handle decompositions of manifolds arise naturally via
Morse theory In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differenti ...
. The modification of handle structures is closely linked to Cerf theory.


Local flatness

Local flatness is a property of a
submanifold In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
in a
topological manifold In topology, a topological manifold is a topological space that locally resembles real ''n''- dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds ...
of larger
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
. In the
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
of topological manifolds, locally flat submanifolds play a role similar to that of embedded submanifolds in the category of
smooth manifolds In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas (topology ...
. Suppose a ''d'' dimensional manifold ''N'' is embedded into an ''n'' dimensional manifold ''M'' (where ''d'' < ''n''). If x \in N, we say ''N'' is locally flat at ''x'' if there is a neighborhood U \subset M of ''x'' such that the topological pair (U, U\cap N) is
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to the pair (\mathbb^n,\mathbb^d), with a standard inclusion of \mathbb^d as a subspace of \mathbb^n. That is, there exists a homeomorphism U\to R^n such that the
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of U\cap N coincides with \mathbb^d.


Schönflies theorems

The generalized Schoenflies theorem states that, if an (''n'' − 1)-dimensional
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
''S'' is embedded into the ''n''-dimensional sphere ''Sn'' in a locally flat way (that is, the embedding extends to that of a thickened sphere), then the pair (''Sn'', ''S'') is homeomorphic to the pair (''Sn'', ''S''''n''−1), where ''S''''n''−1 is the equator of the ''n''-sphere. Brown and Mazur received the Veblen Prize for their independent proofsMazur, Barry, On embeddings of spheres., ''Bull. Amer. Math. Soc.'' 65 1959 59–65. of this theorem.


Branches of geometric topology


Low-dimensional topology

Low-dimensional topology In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the theory of 3-manifolds and 4-manifolds, knot theory, ...
includes: *
Surfaces A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. Surface or surfaces may also refer to: Mathematics *Surface (mathematics), a generalization of a plane which needs not be flat * Sur ...
(2-manifolds) *
3-manifold In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (geometry), plane (a tangent ...
s *
4-manifold In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. T ...
s each have their own theory, where there are some connections. Low-dimensional topology is strongly geometric, as reflected in the
uniformization theorem In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generali ...
in 2 dimensions – every surface admits a constant curvature metric; geometrically, it has one of 3 possible geometries: positive curvature/spherical, zero curvature/flat, negative curvature/hyperbolic – and the
geometrization conjecture In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theor ...
(now theorem) in 3 dimensions – every 3-manifold can be cut into pieces, each of which has one of 8 possible geometries. 2-dimensional topology can be studied as
complex geometry In mathematics, complex geometry is the study of geometry, geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of space (mathematics), spaces su ...
in one variable (
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
s are complex curves) – by the uniformization theorem every conformal class of metrics is equivalent to a unique complex one, and 4-dimensional topology can be studied from the point of view of complex geometry in two variables (complex surfaces), though not every 4-manifold admits a complex structure.


Knot theory

Knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined together so that it cannot be undone. In mathematical language, a knot is an
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
of a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
in 3-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, R3 (since we're using topology, a circle isn't bound to the classical geometric concept, but to all of its
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
s). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R3 upon itself (known as an
ambient isotopy In the mathematical subject of topology, an ambient isotopy, also called an ''h-isotopy'', is a kind of continuous distortion of an ambient space, for example a manifold, taking a submanifold to another submanifold. For example in knot theory, o ...
); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself. To gain further insight, mathematicians have generalized the knot concept in several ways. Knots can be considered in other three-dimensional spaces and objects other than circles can be used; see ''
knot (mathematics) In mathematics, a knot is an embedding of the circle () into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation o ...
''. Higher-dimensional knots are ''n''-dimensional spheres in ''m''-dimensional Euclidean space.


High-dimensional geometric topology

In high-dimensional topology,
characteristic classes In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent to which the bundle is "twisted" and whether it possesses sections. Characterist ...
are a basic invariant, and
surgery theory In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while An ...
is a key theory. A
characteristic class In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent to which the bundle is "twisted" and whether it possesses sections. Characterist ...
is a way of associating to each
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
on a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
''X'' a
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
class of ''X''. The cohomology class measures the extent to which the bundle is "twisted" — particularly, whether it possesses
sections Section, Sectioning, or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
or not. In other words, characteristic classes are global invariants which measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
,
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
.
Surgery theory In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while An ...
is a collection of techniques used to produce one
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
from another in a 'controlled' way, introduced by . Surgery refers to cutting out parts of the manifold and replacing it with a part of another manifold, matching up along the cut or boundary. This is closely related to, but not identical with, handlebody decompositions. It is a major tool in the study and classification of manifolds of dimension greater than 3. More technically, the idea is to start with a well-understood manifold ''M'' and perform surgery on it to produce a manifold ''M ''′ having some desired property, in such a way that the effects on the homology,
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
s, or other interesting invariants of the manifold are known. The classification of
exotic sphere In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of ...
s by led to the emergence of surgery theory as a major tool in high-dimensional topology.


See also

* :Maps of manifolds * List of geometric topology topics *
Plumbing (mathematics) In the mathematical field of geometric topology, among the techniques known as surgery theory, the process of plumbing is a way to create new manifolds out of sphere bundle, disk bundles. It was first described by John Milnor and subsequently use ...


References

* R. B. Sher and R. J. Daverman (2002), ''Handbook of Geometric Topology'', North-Holland. . {{DEFAULTSORT:Geometric Topology Geometry processing