HOME

TheInfoList



OR:

A geometer is a
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
whose area of study is the historical aspects that define
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, instead of the analytical geometric studies that becomes conducted from geometricians. Some notable geometers and their main fields of work, chronologically listed, are:


1000 BCE to 1 BCE

*
Baudhayana The (Sanskrit: बौधायन सूत्रस् ) are a group of Vedic Sanskrit texts which cover dharma, daily ritual, mathematics and is one of the oldest Dharma-related texts of Hinduism that have survived into the modern age from th ...
(fl. c. 800 BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
* Manava (c. 750 BC–690 BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
*
Thales of Miletus Thales of Miletus ( ; ; ) was an Ancient Greek pre-Socratic philosopher from Miletus in Ionia, Asia Minor. Thales was one of the Seven Sages, founding figures of Ancient Greece. Beginning in eighteenth-century historiography, many came to ...
(c. 624 BC – c. 546 BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
*
Pythagoras Pythagoras of Samos (;  BC) was an ancient Ionian Greek philosopher, polymath, and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of P ...
(c. 570 BC – c. 495 BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
,
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
*
Zeno of Elea Zeno of Elea (; ; ) was a pre-Socratic Greek philosopher from Elea, in Southern Italy (Magna Graecia). He was a student of Parmenides and one of the Eleatics. Zeno defended his instructor's belief in monism, the idea that only one single en ...
(c. 490 BC – c. 430 BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
*
Hippocrates of Chios Hippocrates of Chios (; c. 470 – c. 421 BC) was an ancient Greek mathematician, geometer, and astronomer. He was born on the isle of Chios, where he was originally a merchant. After some misadventures (he was robbed by either pirates or ...
(born c. 470 – 410 BC) – first systematically organized '' Stoicheia – Elements'' (geometry textbook) * Mozi (c. 468 BC – c. 391 BC) *
Plato Plato ( ; Greek language, Greek: , ; born  BC, died 348/347 BC) was an ancient Greek philosopher of the Classical Greece, Classical period who is considered a foundational thinker in Western philosophy and an innovator of the writte ...
(427–347 BC) * Theaetetus (c. 417 BC – 369 BC) * Autolycus of Pitane (360–c. 290 BC) –
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
,
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applicati ...
*
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
(fl. 300 BC) – '' Elements'',
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
(sometimes called the "father of geometry") *
Apollonius of Perga Apollonius of Perga ( ; ) was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention o ...
(c. 262 BC – c. 190 BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
,
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
s *
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
(c. 287 BC – c. 212 BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
*
Eratosthenes Eratosthenes of Cyrene (; ;  – ) was an Ancient Greek polymath: a Greek mathematics, mathematician, geographer, poet, astronomer, and music theory, music theorist. He was a man of learning, becoming the chief librarian at the Library of A ...
(c. 276 BC – c. 195/194 BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
* Katyayana (c. 3rd century BC) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...


1–1300 AD

*
Hero of Alexandria Hero of Alexandria (; , , also known as Heron of Alexandria ; probably 1st or 2nd century AD) was a Greek mathematician and engineer who was active in Alexandria in Egypt during the Roman era. He has been described as the greatest experimental ...
(c. AD 10–70) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
*
Pappus of Alexandria Pappus of Alexandria (; ; AD) was a Greek mathematics, Greek mathematician of late antiquity known for his ''Synagoge'' (Συναγωγή) or ''Collection'' (), and for Pappus's hexagon theorem in projective geometry. Almost nothing is known a ...
(c. AD 290–c. 350) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
,
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
* Hypatia of Alexandria (c. AD 370–c. 415) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
*
Brahmagupta Brahmagupta ( – ) was an Indian Indian mathematics, mathematician and Indian astronomy, astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established Siddhanta, do ...
(597–668) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
,
cyclic quadrilateral In geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral (four-sided polygon) whose vertex (geometry), vertices all lie on a single circle, making the sides Chord (geometry), chords of the circle. This circle is called ...
s * Vergilius of Salzburg (c.700–784) – Irish bishop of Aghaboe, Ossory and later
Salzburg Salzburg is the List of cities and towns in Austria, fourth-largest city in Austria. In 2020 its population was 156,852. The city lies on the Salzach, Salzach River, near the border with Germany and at the foot of the Austrian Alps, Alps moun ...
,
Austria Austria, formally the Republic of Austria, is a landlocked country in Central Europe, lying in the Eastern Alps. It is a federation of nine Federal states of Austria, states, of which the capital Vienna is the List of largest cities in Aust ...
; antipodes, and
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
* Al-Abbās ibn Said al-Jawharī (c. 800–c. 860) * Thabit ibn Qurra (826–901) –
analytic geometry In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and als ...
,
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
,
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
s * Abu'l-Wáfa (940–998) –
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applicati ...
, spherical triangles *
Ibn al-Haytham Ḥasan Ibn al-Haytham (Latinization of names, Latinized as Alhazen; ; full name ; ) was a medieval Mathematics in medieval Islam, mathematician, Astronomy in the medieval Islamic world, astronomer, and Physics in the medieval Islamic world, p ...
(965–c. 1040) *
Omar Khayyam Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīshābūrī (18 May 1048 – 4 December 1131) (Persian language, Persian: غیاث الدین ابوالفتح عمر بن ابراهیم خیام نیشابورﻯ), commonly known as Omar ...
(1048–1131) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
,
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
s * Ibn Maḍāʾ (1116–1196)


1301–1800 AD

*
Piero della Francesca Piero della Francesca ( , ; ; ; – 12 October 1492) was an Italian Renaissance painter, Italian painter, mathematician and List of geometers, geometer of the Early Renaissance, nowadays chiefly appreciated for his art. His painting is charact ...
(1415–1492) *
Leonardo da Vinci Leonardo di ser Piero da Vinci (15 April 1452 - 2 May 1519) was an Italian polymath of the High Renaissance who was active as a painter, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially rested o ...
(1452–1519) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
* Jyesthadeva (c. 1500 – c. 1610) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
,
cyclic quadrilateral In geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral (four-sided polygon) whose vertex (geometry), vertices all lie on a single circle, making the sides Chord (geometry), chords of the circle. This circle is called ...
s *
Marin Getaldić Marino Ghetaldi (; ; 2 October 1568 – 11 April 1626) was a Republic of Ragusa, Ragusan scientist. A mathematician and physicist who studied in Italy, England and Belgium, his best results are mainly in physics, especially optics, and mathematic ...
(1568–1626) * Jacques-François Le Poivre (1652–1710) – projective geometry *
Johannes Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, Natural philosophy, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best know ...
(1571–1630) – (used geometric ideas in astronomical work) * Edmund Gunter (1581–1686) * Girard Desargues (1591–1661) –
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
; Desargues' theorem *
René Descartes René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
(1596–1650) – invented the methodology of
analytic geometry In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and als ...
, also called ''Cartesian geometry'' after him *
Pierre de Fermat Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his d ...
(1607–1665) –
analytic geometry In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and als ...
*
Blaise Pascal Blaise Pascal (19June 162319August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. Pascal was a child prodigy who was educated by his father, a tax collector in Rouen. His earliest ...
(1623–1662) –
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
*
Christiaan Huygens Christiaan Huygens, Halen, Lord of Zeelhem, ( , ; ; also spelled Huyghens; ; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution ...
(1629–1695) – evolute * Giordano Vitale (1633–1711) * Philippe de La Hire (1640–1718) –
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
*
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
(1642–1727) – 3rd-degree
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
* Giovanni Ceva (1647–1734) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
* Johann Jacob Heber (1666–1727) – surveyor and geometer * Giovanni Gerolamo Saccheri (1667–1733) –
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
*
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
(1707–1783) * Tobias Mayer (1723–1762) *
Johann Heinrich Lambert Johann Heinrich Lambert (; ; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, at that time allied to the Switzerland, Swiss Confederacy, who made important contributions to the subjects of mathematics, phys ...
(1728–1777) –
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
*
Gaspard Monge Gaspard Monge, Comte de Péluse (; 9 May 1746 – 28 July 1818) was a French mathematician, commonly presented as the inventor of descriptive geometry, (the mathematical basis of) technical drawing, and the father of differential geometry. Dur ...
(1746–1818) –
descriptive geometry Descriptive geometry is the branch of geometry which allows the representation of three-dimensional objects in two dimensions by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design an ...
* John Playfair (1748–1819) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
* Lazare Nicolas Marguerite Carnot (1753–1823) –
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
* Joseph Diaz Gergonne (1771–1859) –
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
; Gergonne point *
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
(1777–1855) – Theorema Egregium * Louis Poinsot (1777–1859) *
Siméon Denis Poisson Baron Siméon Denis Poisson (, ; ; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electricity ...
(1781–1840) * Jean-Victor Poncelet (1788–1867) –
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
*
Augustin-Louis Cauchy Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
(1789–1857) *
August Ferdinand Möbius August Ferdinand Möbius (, ; ; 17 November 1790 – 26 September 1868) was a German mathematician and theoretical astronomer. Life and education Möbius was born in Schulpforta, Electorate of Saxony, and was descended on his mothe ...
(1790–1868) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
* Nikolai Ivanovich Lobachevsky (1792–1856) –
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
, a
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
* Michel Chasles (1793–1880) –
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
* Germinal Dandelin (1794–1847) – Dandelin spheres in
conic sections A conic section, conic or a quadratic curve is a curve obtained from a Conical surface, cone's surface intersecting a plane (mathematics), plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is ...
* Jakob Steiner (1796–1863) – champion of
synthetic geometry Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulates ...
methodology,
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
,
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...


1801–1900 AD

* Karl Wilhelm Feuerbach (1800–1834) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
*
Julius Plücker Julius Plücker (16 June 1801 – 22 May 1868) was a German mathematician and physicist. He made fundamental contributions to the field of analytical geometry and was a pioneer in the investigations of cathode rays that led eventually to the di ...
(1801–1868) * János Bolyai (1802–1860) –
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
, a
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
* Christian Heinrich von Nagel (1803–1882) –
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
*
Johann Benedict Listing Johann Benedict Listing (25 July 1808 – 24 December 1882) was a German mathematician. Early life and education J. B. Listing was born in Frankfurt and died in Göttingen. He finished his studies at the University of Göttingen in 1834, and ...
(1808–1882) –
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
* Hermann Günther Grassmann (1809–1877) –
exterior algebra In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector ...
* Ludwig Otto Hesse (1811–1874) – algebraic invariants and
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
* Ludwig Schlafli (1814–1895) –
Regular 4-polytope In mathematics, a regular 4-polytope or regular polychoron is a regular polytope, regular 4-polytope, four-dimensional polytope. They are the four-dimensional analogues of the Regular polyhedron, regular polyhedra in three dimensions and the regul ...
* Pierre Ossian Bonnet (1819–1892) – differential geometry * Arthur Cayley (1821–1895) * Joseph Bertrand (1822–1900) * Delfino Codazzi (1824–1873) – differential geometry * Bernhard Riemann (1826–1866) – elliptic geometry (a
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
) and Riemannian geometry * Julius Wilhelm Richard Dedekind (1831–1916) * Ludwig Burmester (1840–1927) – theory of Linkage (mechanical), linkages * Edmund Hess (1843–1903) * Albert Victor Bäcklund (1845–1922) * Max Noether (1844–1921) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
* Henri Brocard (1845–1922) – Brocard points * William Kingdon Clifford (1845–1879) – geometric algebra * Pieter Hendrik Schoute (1846–1923) * Felix Klein (1849–1925) * Sofia Kovalevskaya, Sofia Vasilyevna Kovalevskaya (1850–1891) * Evgraf Fedorov (1853–1919) * Henri Poincaré (1854–1912) * Luigi Bianchi (1856–1928) – differential geometry * Alicia Boole Stott (1860–1940) * Hermann Minkowski (1864–1909) –
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
* Henry Frederick Baker (1866–1956) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
* Élie Cartan (1869–1951) * Dmitri Egorov (1869–1931) – differential geometry * Veniamin Kagan (1869–1953) * Raoul Bricard (1870–1944) –
descriptive geometry Descriptive geometry is the branch of geometry which allows the representation of three-dimensional objects in two dimensions by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design an ...
* Ernst Steinitz (1871–1928) – Steinitz's theorem * Marcel Grossmann (1878–1936) * Oswald Veblen (1880–1960) –
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
, differential geometry * Nathan Altshiller Court (1881–1968) – author of ''College Geometry'' * Emmy Noether (1882–1935) – algebraic topology * Harry Clinton Gossard (1884–1954) * Arthur Rosenthal (1887–1959) * Helmut Hasse (1898–1979) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...


1901–present

* W. V. D. Hodge, William Vallance Douglas Hodge (1903–1975) * Patrick du Val (1903–1987) * Beniamino Segre (1903–1977) – combinatorial geometry * J. C. P. Miller (1906–1981) * André Weil (1906–1998) – Algebraic geometry * H. S. M. Coxeter (1907–2003) – theory of polytopes,
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
,
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
* J. A. Todd (1908–1994) * Daniel Pedoe (1910–1998) * Shiing-Shen Chern (1911–2004) – differential geometry * Ernst Witt (1911–1991) * Rafael Artzy (1912–2006) * Aleksandr Danilovich Aleksandrov (1912–1999) * László Fejes Tóth (1915–2005) * Edwin Evariste Moise (1918–1998) * Aleksei Pogorelov (1919–2002) – differential geometry * Magnus Wenninger (1919–2017) – polyhedron models * Jean-Louis Koszul (1921–2018) * Isaak Yaglom (1921–1988) * Eugenio Calabi (1923–2023) * Benoit Mandelbrot (1924–2010) – fractal geometry * Katsumi Nomizu (1924–2008) – affine differential geometry * Michael S. Longuet-Higgins (1925–2016) * John Leech (mathematician), John Leech (1926–1992) * Alexander Grothendieck (1928–2014) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
* Branko Grünbaum (1929–2018) – discrete geometry * Michael Atiyah (1929–2019) * Lev Pontryagin, Lev Semenovich Pontryagin (1908–1988) * Geoffrey Colin Shephard (1927–2016) * Norman Johnson (mathematician), Norman W. Johnson (1930–2017) * John Milnor (1931–) * Roger Penrose (1931–) * Yuri Manin (1937–2023) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
and diophantine geometry * Vladimir Arnold (1937–2010) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
* Ernest Vinberg (1937–2020) * J. H. Conway (1937–2020) – sphere packing, recreational geometry * Robin Hartshorne (1938–) – geometry, algebraic geometry * Phillip Griffiths (1938–) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, differential geometry * Enrico Bombieri (1940–) –
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
* Robert Williams (geometer), Robert Williams (1942–) * Peter McMullen (1942–) * Richard S. Hamilton (1943–2024) – differential geometry, Ricci flow, Poincaré conjecture * Mikhail Gromov (mathematician), Mikhail Gromov (1943–) * Rudy Rucker (1946–) * William Thurston (1946–2012) * Shing-Tung Yau (1949–) *Michael Freedman (1951–) * Egon Schulte (1955–) – polytopes * George W. Hart (1955–) – sculptor * Károly Bezdek (1955–) – discrete geometry, sphere packing,
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
,
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
* Simon Donaldson (1957–) * Kenji Fukaya (1959–) – symplectic geometry * Yong-Geun Oh (1961–) * Toshiyuki Kobayashi (1962–) * Hiraku Nakajima (1962–) – representation theory and geometry * Jun-Muk Hwang, Hwang Jun-Muk (1963–) – algebraic geometry, differential geometry * Grigori Perelman (1966–) – Poincaré conjecture * Maryam Mirzakhani (1977–2017) * Denis Auroux (1977–)


Geometers in art


See also

* Mathematics and architecture


References

{{Reflist Lists of mathematicians by field, Geometers Geometers, *