
A geometer is a
mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems.
Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
whose area of study is
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
.
Some notable geometers and their main fields of work, chronologically listed, are:
1000 BCE to 1 BCE
*
Baudhayana (fl. c. 800 BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
,
geometric algebra
*
Manava (c. 750 BC–690 BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Thales of Miletus
Thales of Miletus ( ; grc-gre, Θαλῆς; ) was a Greek mathematician, astronomer, statesman, and pre-Socratic philosopher from Miletus in Ionia, Asia Minor. He was one of the Seven Sages of Greece. Many, most notably Aristotle, regarded ...
(c. 624 BC – c. 546 BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Pythagoras
Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samian, or simply ; in Ionian Greek; ) was an ancient Ionian Greek philosopher and the eponymous founder of Pythagoreanism. His politic ...
(c. 570 BC – c. 495 BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
,
Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposit ...
*
Zeno of Elea
Zeno of Elea (; grc, Ζήνων ὁ Ἐλεᾱ́της; ) was a pre-Socratic Greek philosopher of Magna Graecia and a member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic. He is best known ...
(c. 490 BC – c. 430 BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Hippocrates of Chios
Hippocrates of Chios ( grc-gre, Ἱπποκράτης ὁ Χῖος; c. 470 – c. 410 BC) was an ancient Greek mathematician, geometer, and astronomer.
He was born on the isle of Chios, where he was originally a merchant. After some misadv ...
(born c. 470 – 410 BC) – first systematically organized ''
Stoicheia – Elements'' (geometry textbook)
*
Mozi
Mozi (; ; Latinized as Micius ; – ), original name Mo Di (), was a Chinese philosopher who founded the school of Mohism during the Hundred Schools of Thought period (the early portion of the Warring States period, –221 BCE). The an ...
(c. 468 BC – c. 391 BC)
*
Plato
Plato ( ; grc-gre, Πλάτων ; 428/427 or 424/423 – 348/347 BC) was a Greek philosopher born in Athens during the Classical period in Ancient Greece. He founded the Platonist school of thought and the Academy, the first institutio ...
(427–347 BC)
*
Theaetetus Theaetetus (Θεαίτητος) is a Greek name which could refer to:
* Theaetetus (mathematician) (c. 417 BC – 369 BC), Greek geometer
* ''Theaetetus'' (dialogue), a dialogue by Plato, named after the geometer
* Theaetetus (crater), a lunar imp ...
(c. 417 BC – 369 BC)
*
Autolycus of Pitane (360–c. 290 BC) –
astronomy
Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
,
spherical geometry
300px, A sphere with a spherical triangle on it.
Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
*
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
(fl. 300 BC) – ''
Elements
Element or elements may refer to:
Science
* Chemical element, a pure substance of one type of atom
* Heating element, a device that generates heat by electrical resistance
* Orbital elements, parameters required to identify a specific orbit of ...
'',
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
(sometimes called the "father of geometry")
*
Apollonius of Perga
Apollonius of Perga ( grc-gre, Ἀπολλώνιος ὁ Περγαῖος, Apollṓnios ho Pergaîos; la, Apollonius Pergaeus; ) was an Ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the contribut ...
(c. 262 BC – c. 190 BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
,
conic section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
s
*
Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scienti ...
(c. 287 BC – c. 212 BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Eratosthenes
Eratosthenes of Cyrene (; grc-gre, Ἐρατοσθένης ; – ) was a Greek polymath: a mathematician, geographer, poet, astronomer, and music theorist. He was a man of learning, becoming the chief librarian at the Library of Alexand ...
(c. 276 BC – c. 195/194 BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Katyayana (c. 3rd century BC) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
1–1300 AD
*
Hero of Alexandria
Hero of Alexandria (; grc-gre, Ἥρων ὁ Ἀλεξανδρεύς, ''Heron ho Alexandreus'', also known as Heron of Alexandria ; 60 AD) was a Greek mathematician and engineer who was active in his native city of Alexandria, Roman Egypt. He ...
(c. AD 10–70) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Pappus of Alexandria
Pappus of Alexandria (; grc-gre, Πάππος ὁ Ἀλεξανδρεύς; AD) was one of the last great Greek mathematicians of antiquity known for his ''Synagoge'' (Συναγωγή) or ''Collection'' (), and for Pappus's hexagon theorem i ...
(c. AD 290–c. 350) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
,
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
*
Hypatia of Alexandria (c. AD 370–c. 415) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Brahmagupta
Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the '' Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical tr ...
(597–668) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
,
cyclic quadrilateral
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be '' ...
s
*
Vergilius of Salzburg
Virgil (– 27 November 784), also spelled Vergil, Vergilius, Virgilius, Feirgil or Fearghal, was an Irish churchman and early astronomer. He left Ireland around 745, intending to visit the Holy Land; but, like many of his countrymen, he settled ...
(c.700–784) – Irish bishop of
Aghaboe,
Ossory and later
Salzburg
Salzburg (, ; literally "Salt-Castle"; bar, Soizbuag, label=Austro-Bavarian) is the fourth-largest city in Austria. In 2020, it had a population of 156,872.
The town is on the site of the Roman settlement of ''Iuvavum''. Salzburg was founded ...
,
Austria
Austria, , bar, Östareich officially the Republic of Austria, is a country in the southern part of Central Europe, lying in the Eastern Alps. It is a federation of nine states, one of which is the capital, Vienna, the most populous ...
;
antipodes, and
astronomy
Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
*
Al-Abbās ibn Said al-Jawharī (c. 800 Baghdad? – c. 860 Baghdad?) was a geometer who worked at the House of Wisdom in Baghdad and for in a short time in Damascus where he made astronomical observations. He was probably of Iranian origin. His most important work was his ...
(c. 800–c. 860)
*
Thabit ibn Qurra (826–901) –
analytic geometry,
non-Euclidean geometry,
conic section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
s
*
Abu'l-Wáfa (940–998) –
spherical geometry
300px, A sphere with a spherical triangle on it.
Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
,
non-Euclidean geometry
*
Alhazen (965–c. 1040)
*
Omar Khayyam (1048–1131) –
algebraic geometry,
conic section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
s
*
Ibn Maḍāʾ (1116–1196)
1301–1800 AD
*
Piero della Francesca (1415–1492)
*
Leonardo da Vinci
Leonardo di ser Piero da Vinci (15 April 14522 May 1519) was an Italian polymath of the High Renaissance who was active as a painter, Drawing, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially re ...
(1452–1519) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Jyesthadeva (c. 1500 – c. 1610) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
,
cyclic quadrilateral
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be '' ...
s
*
Marin Getaldić (1568–1626)
*
Jacques-François Le Poivre Jacques-François Le Poivre (11 February 1652 – 6 December 1710) was a Belgian mathematician and geometer who was a pioneer of projective geometry. He is largely known from a single book in French on conic sections, ''Traité des sections du cyli ...
(1652–1710), projective geometry
*
Johannes Kepler (1571–1630) – (used geometric ideas in astronomical work)
*
Edmund Gunter (1581–1686)
*
Girard Desargues (1591–1661) –
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
;
Desargues' theorem
*
René Descartes
René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Mathe ...
(1596–1650) – invented the methodology of
analytic geometry, also called ''Cartesian geometry'' after him
*
Pierre de Fermat
Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he ...
(1607–1665) –
analytic geometry
*
Blaise Pascal
Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic writer.
He was a child prodigy who was educated by his father, a tax collector in Rouen. Pascal's earlies ...
(1623–1662) –
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
*
Giordano Vitale (1633–1711)
*
Philippe de La Hire (1640–1718) –
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
*
Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the g ...
(1642–1727) – 3rd-degree
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
*
Giovanni Ceva (1647–1734) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Johann Jacob Heber (1666–1727) – surveyor and geometer
*
Giovanni Gerolamo Saccheri (1667–1733) –
non-Euclidean geometry
*
Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
(1707–1783)
*
Tobias Mayer (1723–1762)
*
Johann Heinrich Lambert
Johann Heinrich Lambert (, ''Jean-Henri Lambert'' in French; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, generally referred to as either Swiss or French, who made important contributions to the subjec ...
(1728–1777) –
non-Euclidean geometry
*
Gaspard Monge
Gaspard Monge, Comte de Péluse (9 May 1746 – 28 July 1818) was a French mathematician, commonly presented as the inventor of descriptive geometry, (the mathematical basis of) technical drawing, and the father of differential geometry. Duri ...
(1746–1818) –
descriptive geometry
*
John Playfair
John Playfair FRSE, FRS (10 March 1748 – 20 July 1819) was a Church of Scotland minister, remembered as a scientist and mathematician, and a professor of natural philosophy at the University of Edinburgh. He is best known for his book ''Illu ...
(1748–1819) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Lazare Nicolas Marguerite Carnot (1753–1823) –
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
*
Joseph Diaz Gergonne
Joseph Diez Gergonne (19 June 1771 at Nancy, France – 4 May 1859 at Montpellier, France) was a French mathematician and logician.
Life
In 1791, Gergonne enlisted in the French army as a captain. That army was undergoing rapid expansion becau ...
(1771–1859) –
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
;
Gergonne point
*
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
(1777–1855) –
Theorema Egregium
Gauss's ''Theorema Egregium'' (Latin for "Remarkable Theorem") is a major result of differential geometry, proved by Carl Friedrich Gauss in 1827, that concerns the curvature of surfaces. The theorem says that Gaussian curvature can be dete ...
*
Louis Poinsot (1777–1859)
*
Siméon Denis Poisson
Baron Siméon Denis Poisson FRS FRSE (; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electr ...
(1781–1840)
*
Jean-Victor Poncelet
Jean-Victor Poncelet (; 1 July 1788 – 22 December 1867) was a French engineer and mathematician who served most notably as the Commanding General of the École Polytechnique. He is considered a reviver of projective geometry, and his work ''Tra ...
(1788–1867) –
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
*
Augustin-Louis Cauchy
Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. H ...
(1789 – 1857)
*
August Ferdinand Möbius
August Ferdinand Möbius (, ; ; 17 November 1790 – 26 September 1868) was a German mathematician and theoretical astronomer.
Early life and education
Möbius was born in Schulpforta, Electorate of Saxony, and was descended on ...
(1790–1868) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Nikolai Ivanovich Lobachevsky (1792–1856) –
hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P' ...
, a
non-Euclidean geometry
*
Germinal Dandelin (1794–1847) –
Dandelin spheres In geometry, the Dandelin spheres are one or two spheres that are tangent both to a plane and to a cone that intersects the plane. The intersection of the cone and the plane is a conic section, and the point at which either sphere touches the plan ...
in
conic sections
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a s ...
*
Jakob Steiner (1796–1863) – champion of
synthetic geometry methodology,
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
,
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
1801–1900 AD
*
Karl Wilhelm Feuerbach (1800–1834) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Julius Plücker
Julius Plücker (16 June 1801 – 22 May 1868) was a German mathematician and physicist. He made fundamental contributions to the field of analytical geometry and was a pioneer in the investigations of cathode rays that led eventually to the di ...
(1801–1868)
*
János Bolyai
János Bolyai (; 15 December 1802 – 27 January 1860) or Johann Bolyai, was a Hungarian mathematician, who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry. The discovery of a consist ...
(1802–1860) –
hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P' ...
, a
non-Euclidean geometry
*
Christian Heinrich von Nagel
Christian Heinrich von Nagel (28 February 1803 in Stuttgart, Germany – 27 October 1882 in Ulm, Germany) was a German geometer.
After attending the gymnasium, Nagel went in 1817 to Evangelical Seminaries of Maulbronn and Blaubeuren. From 182 ...
(1803–1882) –
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
*
Johann Benedict Listing (1808–1882) –
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
*
Hermann Günther Grassmann (1809–1877) –
exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is ...
*
Ludwig Otto Hesse (1811–1874) –
algebraic invariants and
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
*
Ludwig Schlafli (1814–1895) –
Regular 4-polytope
*
Pierre Ossian Bonnet (1819–1892) –
differential geometry
*
Arthur Cayley (1821–1895)
*
Joseph Bertrand
Joseph Louis François Bertrand (; 11 March 1822 – 5 April 1900) was a French mathematician who worked in the fields of number theory, differential geometry, probability theory, economics and thermodynamics.
Biography
Joseph Bertrand was ...
(1822–1900)
*
Delfino Codazzi (1824–1873) –
differential geometry
*
Bernhard Riemann (1826–1866) –
elliptic geometry (a
non-Euclidean geometry) and
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to po ...
*
Julius Wilhelm Richard Dedekind
Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and
the axiomatic foundations of arithmetic. His ...
(1831–1916)
*
Ludwig Burmester (1840–1927) – theory of
linkages
*
Edmund Hess (1843–1903)
*
Albert Victor Bäcklund (1845–1922)
*
Max Noether (1844–1921) –
algebraic geometry
*
Henri Brocard (1845–1922) –
Brocard points
*
William Kingdon Clifford
William Kingdon Clifford (4 May 18453 March 1879) was an English mathematician and philosopher. Building on the work of Hermann Grassmann, he introduced what is now termed geometric algebra, a special case of the Clifford algebra named in ...
(1845–1879) –
geometric algebra
*
Pieter Hendrik Schoute (1846–1923)
*
Felix Klein
Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
(1849–1925)
*
Sofia Vasilyevna Kovalevskaya (1850–1891)
*
Evgraf Fedorov (1853–1919)
*
Henri Poincaré
Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
(1854–1912)
*
Luigi Bianchi (1856–1928) –
differential geometry
*
Alicia Boole Stott (1860–1940)
*
Hermann Minkowski
Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in numb ...
(1864–1909) –
non-Euclidean geometry
*
Henry Frederick Baker
Henry Frederick Baker FRS FRSE (3 July 1866 – 17 March 1956) was a British mathematician, working mainly in algebraic geometry, but also remembered for contributions to partial differential equations (related to what would become known as so ...
(1866–1956) –
algebraic geometry
*
Élie Cartan
Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry ...
(1869–1951)
*
Dmitri Egorov (1869–1931) –
differential geometry
*
Veniamin Kagan (1869–1953)
*
Raoul Bricard (1870–1944) –
descriptive geometry
*
Ernst Steinitz (1871–1928) –
Steinitz's theorem
*
Marcel Grossmann (1878–1936)
*
Oswald Veblen (1880–1960) –
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
,
differential geometry
*
Emmy Noether (1882–1935) –
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
*
Harry Clinton Gossard
Harry Clinton Gossard (1884–1954) was an American educator and geometer. He is credited with the discovery of a then unknown triangle center in 1916 to which John Conway assigned the name Gossard perspector in 1998.
After receiving his Ph.D. ...
(1884–1954)
*
Arthur Rosenthal (1887–1959)
*
Helmut Hasse
Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory a ...
(1898–1979) –
algebraic geometry
1901–present
*
Denis Auroux (1977–)
*
William Vallance Douglas Hodge (1903–1975)
*
Patrick du Val (1903–1987)
*
Beniamino Segre (1903–1977) –
combinatorial geometry
*
J. C. P. Miller
Jeffrey Charles Percy Miller (31 August 1906 – 24 April 1981) was an English mathematician and computing pioneer. He worked in number theory and on geometry, particularly polyhedra, where Miller's monster refers to the great dirhombicosidodec ...
(1906–1981)
*
André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was a founding member and the ''de facto'' early leader of the mathematical Bourbaki group. ...
(1906–1998) –
Algebraic geometry
*
H. S. M. Coxeter (1907–2003) – theory of
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
s,
non-Euclidean geometry,
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
*
J. A. Todd (1908–1994)
*
Daniel Pedoe (1910–1998)
*
Shiing-Shen Chern
Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geom ...
(1911–2004) –
differential geometry
*
Ernst Witt
Ernst Witt (26 June 1911 – 3 July 1991) was a German mathematician, one of the leading algebraists of his time.
Biography
Witt was born on the island of Alsen, then a part of the German Empire. Shortly after his birth, his parents moved the ...
(1911–1991)
*
Rafael Artzy (1912–2006)
*
Aleksandr Danilovich Aleksandrov (1912–1999)
*
László Fejes Tóth (1915–2005)
*
Edwin Evariste Moise
Edwin Evariste Moise (; December 22, 1918 – December 18, 1998)
was an American mathematician and mathematics education reformer. After his retirement from mathematics he became a literary critic of 19th-century English poetry and had severa ...
(1918–1998)
*
Aleksei Pogorelov (1919–2002) – differential geometry
*
Magnus Wenninger
Father Magnus J. Wenninger OSB (October 31, 1919Banchoff (2002)– February 17, 2017) was an American mathematician who worked on constructing polyhedron models, and wrote the first book on their construction.
Early life and education
Born to Ge ...
(1919–2017) –
polyhedron model
A polyhedron model is a physical construction of a polyhedron, constructed from cardboard, plastic board, wood board or other panel material, or, less commonly, solid material.
Since there are 75 uniform polyhedra, including the five regular c ...
s
*
Jean-Louis Koszul (1921–2018)
*
Isaak Yaglom (1921–1988)
*
Benoit Mandelbrot (1924–2010) –
fractal geometry
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as ill ...
*
Katsumi Nomizu (1924–2008) –
affine differential geometry
*
Michael S. Longuet-Higgins (1925–2016)
*
John Leech (1926–1992)
*
Alexander Grothendieck (1928–2014) –
algebraic geometry
*
Branko Grünbaum
Branko Grünbaum ( he, ברנקו גרונבאום; 2 October 1929 – 14 September 2018) was a Croatian-born mathematician of Jewish descent[discrete geometry
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic ge ...](_blank)
*
Michael Atiyah
Sir Michael Francis Atiyah (; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded t ...
(1929–2019)
*
Lev Semenovich Pontryagin
Lev Semenovich Pontryagin (russian: Лев Семёнович Понтрягин, also written Pontriagin or Pontrjagin) (3 September 1908 – 3 May 1988) was a Soviet mathematician. He was born in Moscow and lost his eyesight completely due ...
(1908–1988)
*
Geoffrey Colin Shephard (1927–2016)
*
Norman W. Johnson (1930–2017)
*
John Milnor
John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Un ...
(1931–)
*
Roger Penrose
Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus f ...
(1931–)
*
Yuri Manin (1937–) –
algebraic geometry and
diophantine geometry
*
Vladimir Arnold
Vladimir Igorevich Arnold (alternative spelling Arnol'd, russian: link=no, Влади́мир И́горевич Арно́льд, 12 June 1937 – 3 June 2010) was a Soviet and Russian mathematician. While he is best known for the Kolmogorov– ...
(1937–2010) –
algebraic geometry
*
Ernest Vinberg (1937–2020)
*
J. H. Conway (1937–2020) –
sphere packing
In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three- dimensional Euclidean space. However, sphere pack ...
,
recreational geometry
Recreation is an activity of leisure, leisure being discretionary time. The "need to do something for recreation" is an essential element of human biology and psychology. Recreational activities are often done for enjoyment, amusement, or pleasure ...
*
Robin Hartshorne (1938–) – geometry, algebraic geometry
*
Phillip Griffiths
Phillip Augustus Griffiths IV (born October 18, 1938) is an American mathematician, known for his work in the field of geometry, and in particular for the complex manifold approach to algebraic geometry. He was a major developer in particula ...
(1938–) –
algebraic geometry,
differential geometry
*
Enrico Bombieri
Enrico Bombieri (born 26 November 1940, Milan) is an Italian mathematician, known for his work in analytic number theory, Diophantine geometry, complex analysis, and group theory. Bombieri is currently Professor Emeritus in the School of Mathe ...
(1940–) –
algebraic geometry
*
Robert Williams Robert, Rob, Robbie, Bob or Bobby Williams may refer to:
Entertainment Film
* Robert Williams (actor, born 1894) (1894–1931), American stage and film actor
* Robert B. Williams (actor) (1904–1978), American film actor
* R. J. Williams (born ...
(1942–)
*
Peter McMullen (1942–)
*
Richard S. Hamilton
Richard Streit Hamilton (born 10 January 1943) is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton ...
(1943–) –
differential geometry,
Ricci flow,
Poincaré conjecture
In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.
Originally conjectured b ...
*
Mikhail Gromov (1943–)
*
Rudy Rucker (1946–)
*
William Thurston (1946–2012)
*
Shing-Tung Yau
Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathem ...
(1949–)
*
Michael Freedman (1951–)
*
Egon Schulte (1955–) –
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
s
*
George W. Hart (1955–) – sculptor
*
Károly Bezdek (1955–) –
discrete geometry
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic ge ...
,
sphere packing
In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three- dimensional Euclidean space. However, sphere pack ...
,
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
,
non-Euclidean geometry
*
Simon Donaldson (1957–)
*
Kenji Fukaya
Kenji Fukaya (Japanese: 深谷賢治, ''Fukaya Kenji'') is a Japanese mathematician known for his work in symplectic geometry and Riemannian geometry. His many fundamental contributions to mathematics include the discovery of the Fukaya cate ...
(1959–) – symplectic geometry
*
Oh Yong-Geun (1961–)
*
Toshiyuki Kobayashi (1962–)
*
Hiraku Nakajima
Hiraku Nakajima ( Japanese: 中島 啓 ''Nakajima Hiraku''; born November 30, 1962) is a Japanese mathematician, and a professor of the Kavli Institute for the Physics and Mathematics of the Universe at the University of Tokyo. He will be Inter ...
(1962–) – representation theory and geometry
*
Hwang Jun-Muk (1963–) – algebraic geometry, differential geometry
*
Grigori Perelman
Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
(1966–) –
Poincaré conjecture
In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.
Originally conjectured b ...
*
Maryam Mirzakhani (1977–2017)
Geometers in art
References
{{Reflist
Geometers
*