Generalized Bernoulli Numbers
   HOME

TheInfoList



OR:

A generalization is a form of
abstraction Abstraction is a process where general rules and concepts are derived from the use and classifying of specific examples, literal (reality, real or Abstract and concrete, concrete) signifiers, first principles, or other methods. "An abstraction" ...
whereby common properties of specific instances are formulated as general concepts or claims. Generalizations posit the existence of a domain or
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of elements, as well as one or more common characteristics shared by those elements (thus creating a
conceptual model The term conceptual model refers to any model that is formed after a wikt:concept#Noun, conceptualization or generalization process. Conceptual models are often abstractions of things in the real world, whether physical or social. Semantics, Semant ...
). As such, they are the essential basis of all valid
deductive Deductive reasoning is the process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false. For example, th ...
inferences (particularly in
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
, mathematics and science), where the process of verification is necessary to determine whether a generalization holds true for any given situation. Generalization can also be used to refer to the process of identifying the parts of a whole, as belonging to the whole. The parts, which might be unrelated when left on their own, may be brought together as a group, hence belonging to the whole by establishing a common relation between them. However, the parts cannot be generalized into a whole—until a common relation is established among ''all'' parts. This does not mean that the parts are unrelated, only that no common relation has been established yet for the generalization. The concept of generalization has broad application in many connected disciplines, and might sometimes have a more specific meaning in a specialized context (e.g. generalization in psychology, generalization in learning). In general, given two related concepts ''A'' and ''B,'' ''A'' is a "generalization" of ''B'' (equiv., ''B'' is a
special case In logic, especially as applied in mathematics, concept is a special case or specialization of concept precisely if every instance of is also an instance of but not vice versa, or equivalently, if is a generalization of .Brown, James Robert.� ...
of ''A'') if and only if both of the following hold: * Every instance of concept ''B'' is also an instance of concept ''A.'' * There are instances of concept ''A'' which are not instances of concept ''B''. For example, the concept ''animal'' is a generalization of the concept ''bird'', since every bird is an animal, but not all animals are birds (dogs, for instance). For more, see Specialisation (biology).


Hypernym and hyponym

The connection of ''generalization'' to ''specialization'' (or '' particularization'') is reflected in the contrasting words
hypernym Hypernymy and hyponymy are the semantic relations between a generic term (''hypernym'') and a more specific term (''hyponym''). The hypernym is also called a ''supertype'', ''umbrella term'', or ''blanket term''. The hyponym names a subtype of ...
and
hyponym Hypernymy and hyponymy are the wikt:Wiktionary:Semantic relations, semantic relations between a generic term (''hypernym'') and a more specific term (''hyponym''). The hypernym is also called a ''supertype'', ''umbrella term'', or ''blanket term ...
. A hypernym as a generic stands for a class or group of equally ranked items, such as the term ''tree'' which stands for equally ranked items such as ''peach'' and ''oak'', and the term ''ship'' which stands for equally ranked items such as ''cruiser'' and ''steamer''. In contrast, a hyponym is one of the items included in the generic, such as ''peach'' and ''oak'' which are included in ''tree'', and ''cruiser'' and ''steamer'' which are included in ''ship''. A hypernym is superordinate to a hyponym, and a hyponym is subordinate to a hypernym.


Examples


Biological generalization

An animal is a generalization of a
mammal A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
, a bird, a fish, an
amphibian Amphibians are ectothermic, anamniote, anamniotic, tetrapod, four-limbed vertebrate animals that constitute the class (biology), class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all Tetrapod, tetrapods, but excl ...
and a reptile.


Cartographic generalization of geo-spatial data

Generalization has a long history in
cartography Cartography (; from , 'papyrus, sheet of paper, map'; and , 'write') is the study and practice of making and using maps. Combining science, aesthetics and technique, cartography builds on the premise that reality (or an imagined reality) can ...
as an art of creating maps for different scale and purpose.
Cartographic generalization Cartographic generalization, or map generalization, includes all changes in a map that are made when one derives a scale (map), smaller-scale map from a larger-scale map or map data. It is a core part of cartographic design. Whether done manually b ...
is the process of selecting and representing information of a map in a way that adapts to the scale of the display medium of the map. In this way, every map has, to some extent, been generalized to match the criteria of display. This includes small cartographic scale maps, which cannot convey every detail of the real world. As a result, cartographers must decide and then adjust the content within their maps, to create a suitable and useful map that conveys the
geospatial Geographic data and information is defined in the ISO/TC 211 series of standards as data and information having an implicit or explicit association with a location relative to Earth (a geographic location or geographic position). It is also call ...
information within their representation of the world. Generalization is meant to be context-specific. That is to say, correctly generalized maps are those that emphasize the most important map elements, while still representing the world in the most faithful and recognizable way. The level of detail and importance in what is remaining on the map must outweigh the insignificance of items that were generalized—so as to preserve the distinguishing characteristics of what makes the map useful and important.


Mathematical generalizations

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, one commonly says that a concept or a result is a ''generalization'' of if is defined or proved before (historically or conceptually) and is a special case of . * The
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
are a generalization of the
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
, which are a generalization of the
rational numbers In mathematics, a rational number is a number that can be expressed as the quotient or fraction (mathematics), fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for examp ...
, which are a generalization of the
integers An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
, which are a generalization of the
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
. * A
polygon In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
is a generalization of a 3-sided
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
, a 4-sided
quadrilateral In Euclidean geometry, geometry a quadrilateral is a four-sided polygon, having four Edge (geometry), edges (sides) and four Vertex (geometry), corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''l ...
, and so on to ''n'' sides. * A
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
is a generalization of a 2-dimensional square, a 3-dimensional
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
, and so on to ''n''
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
s. * A
quadric In mathematics, a quadric or quadric surface is a generalization of conic sections (ellipses, parabolas, and hyperbolas). In three-dimensional space, quadrics include ellipsoids, paraboloids, and hyperboloids. More generally, a quadric hype ...
, such as a
hypersphere In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point ...
,
ellipsoid An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional Scaling (geometry), scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a Surface (mathemat ...
,
paraboloid In geometry, a paraboloid is a quadric surface that has exactly one axial symmetry, axis of symmetry and no central symmetry, center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar p ...
, or
hyperboloid In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by def ...
, is a generalization of a
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
to higher dimensions. * A
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
is a generalization of a
MacLaurin series Maclaurin or MacLaurin is a surname. Notable people with the surname include: * Colin Maclaurin (1698–1746), Scottish mathematician * Normand MacLaurin (1835–1914), Australian politician and university administrator * Henry Normand MacLaurin ...
. * The
binomial formula In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, the power expands into a polynomial with terms of the form , where the exponents and a ...
is a generalization of the formula for (1+x)^n. * A
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
is a generalization of a field.


See also

* Anti-unification *
Categorical imperative The categorical imperative () is the central philosophical concept in the deontological Kantian ethics, moral philosophy of Immanuel Kant. Introduced in Kant's 1785 ''Groundwork of the Metaphysics of Morals'', it is a way of evaluating motivati ...
(ethical generalization) * ''
Ceteris paribus ' (also spelled ') (Classical ) is a Latin phrase, meaning "other things equal"; some other English translations of the phrase are "all other things being equal", "other things held constant", "all else unchanged", and "all else being equal". ...
'' * {{section link, Class diagram, Generalization/Inheritance *
External validity External validity is the validity of applying the conclusions of a scientific study outside the context of that study. In other words, it is the extent to which the results of a study can generalize or transport to other situations, people, stimul ...
(scientific studies) * Faulty generalization * Generic (disambiguation) *
Critical thinking Critical thinking is the process of analyzing available facts, evidence, observations, and arguments to make sound conclusions or informed choices. It involves recognizing underlying assumptions, providing justifications for ideas and actions, ...
* Generic antecedent * Hasty generalization *
Inheritance (object-oriented programming) In object-oriented programming, inheritance is the mechanism of basing an Object (computer science), object or Class (computer programming), class upon another object (Prototype-based programming, prototype-based inheritance) or class (Class-base ...
* ''
Mutatis mutandis ''Mutatis mutandis'' is a Medieval Latin phrase meaning "with things changed that should be changed" or "once the necessary changes have been made", literally: having been changed, going to be changed. It continues to be seen as a foreign-origin ...
'' *
-onym The suffix ''-onym'' (from ) is a bound morpheme, that is attached to the end of a root word, thus forming a new compound word that designates a particular ''class'' of names. In linguistic terminology, compound words that are formed with suffix ...
* Ramer–Douglas–Peucker algorithm *
Semantic compression In natural language processing, semantic compression is a process of compacting a lexicon used to build a textual document (or a set of documents) by reducing language heterogeneity, while maintaining text semantics. As a result, the same ideas ca ...
* Inventor's paradox


References

Generalizations Critical thinking skills Inductive_reasoning