The Gabor transform, named after
Dennis Gabor
Dennis Gabor ( ; ; 5 June 1900 – 9 February 1979) was a Hungarian-British physicist who received the Nobel Prize in Physics in 1971 for his invention of holography. He obtained British citizenship in 1946 and spent most of his life in Engla ...
, is a special case of the
short-time Fourier transform
The short-time Fourier transform (STFT) is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide ...
. It is used to determine the
sinusoid
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is '' simple harmonic motion''; as rotation, it correspond ...
al
frequency
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
and
phase
Phase or phases may refer to:
Science
*State of matter, or phase, one of the distinct forms in which matter can exist
*Phase (matter), a region of space throughout which all physical properties are essentially uniform
*Phase space, a mathematica ...
content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a
Gaussian function
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function (mathematics), function of the base form
f(x) = \exp (-x^2)
and with parametric extension
f(x) = a \exp\left( -\frac \right)
for arbitrary real number, rea ...
, which can be regarded as a
window function
In signal processing and statistics, a window function (also known as an apodization function or tapering function) is a mathematical function that is zero-valued outside of some chosen interval. Typically, window functions are symmetric around ...
, and the resulting function is then transformed with a Fourier transform to derive the
time-frequency analysis.
[E. Sejdić, I. Djurović, J. Jiang, “Time-frequency feature representation using energy concentration: An overview of recent advances,” ''Digital Signal Processing'', vol. 19, no. 1, pp. 153-183, January 2009.] The window function means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal ''x''(''t'') is defined by this formula:
:

The Gaussian function has infinite range and it is impractical for implementation. However, a level of significance can be chosen (for instance 0.00001) for the distribution of the Gaussian function.
:
Outside these limits of
integration (
) the Gaussian function is small enough to be ignored. Thus the Gabor transform can be satisfactorily approximated as
:
This simplification makes the Gabor transform practical and realizable.
The window function width can also be varied to optimize the time-frequency resolution tradeoff for a particular application by replacing the
with
for some chosen
.
Inverse Gabor transform
The Gabor transform is invertible. Because it is over-complete, the original signal can be recovered in a variety of ways. For example, the "unwindowing" approach can be used for any
:
:
Alternatively, all of the time components can be combined:
:
Properties of the Gabor transform
The Gabor transform has many properties like those of the Fourier transform. These properties are listed in the following tables.
Application and example

The main application of the Gabor transform is used in
time–frequency analysis
In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a fun ...
. Take the following function as an example. The input signal has 1 Hz frequency component when ''t'' ≤ 0 and has 2 Hz frequency component when ''t'' > 0
:
But if the total bandwidth available is 5 Hz, other frequency bands except ''x''(''t'') are wasted. Through time–frequency analysis by applying the Gabor transform, the available bandwidth can be known and those frequency bands can be used for other applications and bandwidth is saved. The right side picture shows the input signal ''x''(''t'') and the output of the Gabor transform. As was our expectation, the frequency distribution can be separated into two parts. One is ''t'' ≤ 0 and the other is ''t'' > 0. The white part is the frequency band occupied by ''x''(''t'') and the black part is not used. Note that for each point in time there is both a
negative (upper white part) and a positive (lower white part) frequency component.
Discrete Gabor-transformation
A discrete version of Gabor representation
:
with
can be derived easily by discretizing the Gabor-basis-function in these equations. Hereby the continuous parameter ''t'' is replaced by the discrete time ''k''. Furthermore, the now finite summation limit in Gabor representation has to be considered. In this way, the sampled signal ''y''(''k'') is split into ''M'' time frames of length ''N''. According to
, the factor Ω for critical sampling is
.
Similar to the DFT (discrete Fourier transformation) a frequency domain split into ''N'' discrete partitions is obtained. An inverse transformation of these ''N'' spectral partitions then leads to ''N'' values ''y''(''k'') for the time window, which consists of ''N'' sample values. For overall ''M'' time windows with N sample values, each signal ''y''(''k'') contains ''K'' = ''N''
''M'' sample values: (the discrete Gabor representation)
:
with
According to the equation above, the ''N''
''M'' coefficients
correspond to the number of sample values ''K'' of the signal.
For over-sampling
is set to
with ''N''′ > ''N'', which results in ''N''′ > ''N'' summation coefficients in the second sum of the discrete Gabor representation. In this case, the number of obtained Gabor-coefficients would be ''M''
''N''′ > ''K''. Hence, more coefficients than sample values are available and therefore a redundant representation would be achieved.
Scaled Gabor transform
As in short time Fourier transform, the resolution in time and frequency domain can be adjusted by choosing different window function width. In Gabor transform cases, by adding variance
, as following equation:
The scaled (normalized) Gaussian window denotes as:
:
So the Scaled Gabor transform can be written as:
:
With a large
, the window function will be narrow, causing higher resolution in time domain but lower resolution in frequency domain. Similarly, a small
will lead to a wide window, with higher resolution in frequency domain but lower resolution in time domain.
Time-causal analogue of the Gabor transform
When processing temporal signals, data from the future cannot be accessed, which leads to problems if attempting to use Gabor functions for processing real-time signals. A time-causal analogue of the Gabor filter has been developed in
[ ] based on replacing the Gaussian kernel in the Gabor function with a time-causal and time-recursive kernel referred to as the time-causal limit kernel. In this way, time-frequency analysis based on the resulting complex-valued extension of the time-causal limit kernel makes it possible to capture essentially similar transformations of a temporal signal as the Gabor function can, and corresponding to the Heisenberg group, see
[ for further details.
]
See also
* Gabor filter
In image processing, a Gabor filter, named after Dennis Gabor, who first proposed it as a 1D filter.
The Gabor filter was first generalized to 2D by Gösta Granlund, by adding a reference direction.
The Gabor filter is a linear filter used for ...
* Gabor wavelet
* Gabor atom In applied mathematics, Gabor atoms, or Gabor functions, are functions used in the analysis proposed by Dennis Gabor in 1946 in which a family of functions is built from translations and modulations of a generating function.
Overview
In 1946, Denn ...
* Time-frequency representation
* S transform
* Short-time Fourier transform
The short-time Fourier transform (STFT) is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide ...
* Wigner distribution function
The Wigner distribution function (WDF) is used in signal processing as a transform in time-frequency analysis.
The WDF was first proposed in physics to account for quantum corrections to classical statistical mechanics in 1932 by Eugene Wigner, ...
References
* D. Gabor, Theory of Communication, Part 1, J. Inst. of Elect. Eng. Part III, Radio and Communication, vol 93, p. 429 1946 (http://genesis.eecg.toronto.edu/gabor1946.pdf)
*Jian-Jiun Ding, Time frequency analysis and wavelet transform class note, the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, 2007.
{{Authority control
Integral transforms