In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, Friedrichs's inequality is a
theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
of
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
, due to
Kurt Friedrichs
Kurt Otto Friedrichs (September 28, 1901 – December 31, 1982) was a German-American mathematician. He was the co-founder of the Courant Institute at New York University, and a recipient of the National Medal of Science.
Biography
Friedrichs wa ...
. It places a bound on the
''Lp'' norm of a function using ''L
p'' bounds on the
weak derivative
In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (''strong derivative'') for functions not assumed differentiable, but only integrable, i.e., to lie in the L''p'' space L^1( ,b.
The method o ...
s of the function and the
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
of the
domain
A domain is a geographic area controlled by a single person or organization. Domain may also refer to:
Law and human geography
* Demesne, in English common law and other Medieval European contexts, lands directly managed by their holder rather ...
, and can be used to show that certain
norms on
Sobolev space
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense ...
s are equivalent. Friedrichs's inequality generalizes the
Poincaré–Wirtinger inequality, which deals with the case ''k'' = 1.
Statement of the inequality
Let
be a
bounded subset
In mathematical analysis and related areas of mathematics, a set is called bounded if all of its points are within a certain distance of each other. Conversely, a set which is not bounded is called unbounded. The word "bounded" makes no sense in a ...
of
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
with
diameter
In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
. Suppose that
lies in the Sobolev space
, i.e.,
and the
trace
Trace may refer to:
Arts and entertainment Music
* ''Trace'' (Son Volt album), 1995
* ''Trace'' (Died Pretty album), 1993
* Trace (band), a Dutch progressive rock band
* ''The Trace'' (album), by Nell
Other uses in arts and entertainment
* ...
of
on the boundary
is zero. Then
In the above
*
denotes the
''Lp'' norm;
* ''α'' = (''α''
1, ..., ''α''
''n'') is a
multi-index
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices ...
with norm , ''α'', = ''α''
1 + ... + ''α''
''n'';
* D
α''u'' is the mixed
partial derivative
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
See also
*
Poincaré inequality
In mathematics, the Poincaré inequality is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry ...
References
*
Sobolev spaces
Inequalities (mathematics)
Linear functionals
{{mathanalysis-stub