Fock–Lorentz Symmetry
   HOME

TheInfoList



OR:

Lorentz invariance In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While ...
follows from two independent
postulates An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
: the
principle of relativity In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference. For example, in the framework of special relativity, the Maxwell equations ...
and the principle of constancy of the speed of light. Dropping the latter while keeping the former leads to a new invariance, known as Fock–Lorentz symmetry or the projective Lorentz transformation. The general study of such theories began with Fock, who was motivated by the search for the general
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
preserving relativity without assuming the constancy of ''c''. This invariance does not distinguish between
inertial frames In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
(and therefore satisfies the
principle of relativity In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference. For example, in the framework of special relativity, the Maxwell equations ...
) but it allows for a varying
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
in space, ''c''; indeed it allows for a non-invariant ''c''. According to
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
, the speed of light satisfies : c = \frac, where ''ε''0 and ''μ''0 are the
electric constant Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric const ...
and the
magnetic constant The vacuum magnetic permeability (variously ''vacuum permeability'', ''permeability of free space'', ''permeability of vacuum'', ''magnetic constant'') is the magnetic permeability in a classical vacuum. It is a physical constant, conventionall ...
. If the speed of light depends upon the spacetime coordinates of the medium, say ''x'', then : c(x) = \frac, where \chi (x) represents the vacuum as a variable medium.


See also

*
Doubly special relativity Doubly special relativity (DSR) – also called deformed special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity (the speed of light), but also an observer-independent ma ...
*
Orders of magnitude (length) The following are examples of order of magnitude, orders of magnitude for different lengths. Overview Detailed list To help compare different orders of magnitude, the following list describes various lengths between 1.6 \times 10^ me ...
*
Planck scale In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: '' c'', '' G'', '' ħ'', and ''k''B (described further below). Expressing one of ...
*
Planck units In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: ''Speed of light, c'', ''Gravitational constant, G'', ''Reduced Planck constant, ħ ...
*
Quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
* Planck epoch


References


Further reading

* * *
40th Winter School on Theoretical Physics
{{DEFAULTSORT:Fock-Lorentz symmetry Special relativity Symmetry