In
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
physical chemistry
Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mech ...
and
engineering
Engineering is the practice of using natural science, mathematics, and the engineering design process to Problem solving#Engineering, solve problems within technology, increase efficiency and productivity, and improve Systems engineering, s ...
, fluid dynamics is a subdiscipline of
fluid mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasma (physics), plasmas) and the forces on them.
Originally applied to water (hydromechanics), it found applications in a wide range of discipl ...
that describes the flow of
fluid
In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
s –
liquid
Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
s and
gas
Gas is a state of matter that has neither a fixed volume nor a fixed shape and is a compressible fluid. A ''pure gas'' is made up of individual atoms (e.g. a noble gas like neon) or molecules of either a single type of atom ( elements such as ...
es. It has several subdisciplines, including (the study of air and other gases in motion) and (the study of water and other liquids in motion). Fluid dynamics has a wide range of applications, including calculating
force
In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
s and
moments on
aircraft
An aircraft ( aircraft) is a vehicle that is able to flight, fly by gaining support from the Atmosphere of Earth, air. It counters the force of gravity by using either Buoyancy, static lift or the Lift (force), dynamic lift of an airfoil, or, i ...
, determining the
mass flow rate
In physics and engineering, mass flow rate is the Temporal rate, rate at which mass of a substance changes over time. Its unit of measurement, unit is kilogram per second (kg/s) in SI units, and Slug (unit), slug per second or pound (mass), pou ...
of
petroleum
Petroleum, also known as crude oil or simply oil, is a naturally occurring, yellowish-black liquid chemical mixture found in geological formations, consisting mainly of hydrocarbons. The term ''petroleum'' refers both to naturally occurring un ...
through
pipelines
A pipeline is a system of pipes for long-distance transportation of a liquid or gas, typically to a market area for consumption. The latest data from 2014 gives a total of slightly less than of pipeline in 120 countries around the world. The Un ...
,
predicting weather patterns, understanding
nebula
A nebula (; or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the Pillars of Creation in ...
e in
interstellar space, understanding large scale
geophysical flows involving oceans/atmosphere and
modelling fission weapon detonation.
Fluid dynamics offers a systematic structure—which underlies these
practical disciplines
Applied science is the application of the scientific method and scientific knowledge to attain practical goals. It includes a broad range of disciplines, such as engineering and medicine. Applied science is often contrasted with basic science, ...
—that embraces empirical and semi-empirical laws derived from
flow measurement
Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:
* Obstruction type (differential pr ...
and used to solve practical problems. The solution to a fluid dynamics problem typically involves the calculation of various properties of the fluid, such as
flow velocity
In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the f ...
,
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
,
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
, and
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, as functions of space and time.
Before the twentieth century, "hydrodynamics" was synonymous with fluid dynamics. This is still reflected in names of some fluid dynamics topics, like
magnetohydrodynamics
In physics and engineering, magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydromagnetics) is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single Continuum ...
and
hydrodynamic stability
In fluid dynamics, hydrodynamic stability is the field of study, field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so ...
, both of which can also be applied to gases.
Equations
The foundational axioms of fluid dynamics are the
conservation law
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momen ...
s, specifically,
conservation of mass
In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter the mass of the system must remain constant over time.
The law implies that mass can neith ...
,
conservation of linear momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the Multiplication, product of the mass and velocity of an object. It is a Euclidean vector, vector quantity, possessi ...
, and
conservation of energy
The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
(also known as the ''
first law of thermodynamics
The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. For a thermodynamic process affecting a thermodynamic system without transfer of matter, the law distinguishes two ...
''). These are based on
classical mechanics
Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics inv ...
and are modified in
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
and
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. They are expressed using the
Reynolds transport theorem
In differential calculus, the Reynolds transport theorem (also known as the Leibniz–Reynolds transport theorem), or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz inte ...
.
In addition to the above, fluids are assumed to obey the
continuum assumption
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them.
Originally applied to water (hydromechanics), it found applications in a wide range of disciplines, including m ...
. At small scale, all fluids are composed of molecules that collide with one another and solid objects. However, the continuum assumption assumes that fluids are continuous, rather than discrete. Consequently, it is assumed that properties such as density, pressure, temperature, and flow velocity are well-defined at
infinitesimal
In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
ly small points in space and vary continuously from one point to another. The fact that the fluid is made up of discrete molecules is ignored.
For fluids that are sufficiently dense to be a continuum, do not contain ionized species, and have flow velocities that are small in relation to the speed of light, the momentum equations for
Newtonian fluid
A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of cha ...
s are the
Navier–Stokes equations
The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
—which is a
non-linear
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathe ...
set of
differential equations that describes the flow of a fluid whose stress depends linearly on flow velocity gradients and pressure. The unsimplified equations do not have a general
closed-form solution
In mathematics, an expression or equation is in closed form if it is formed with constants, variables, and a set of functions considered as ''basic'' and connected by arithmetic operations (, and integer powers) and function composition. C ...
, so they are primarily of use in
computational fluid dynamics
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid dynamics, fluid flows. Computers are used to perform the calculations required ...
. The equations can be simplified in several ways, all of which make them easier to solve. Some of the simplifications allow some simple fluid dynamics problems to be solved in closed form.
In addition to the mass, momentum, and energy conservation equations, a
thermodynamic
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of th ...
equation of state that gives the pressure as a function of other thermodynamic variables is required to completely describe the problem. An example of this would be the
perfect gas equation of state:
:
where is
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
, is
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
, and is the
absolute temperature
Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion.
Thermodynamic temperature is typically expres ...
, while is the
gas constant
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment p ...
and is
molar mass
In chemistry, the molar mass () (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical substance ( element or compound) is defined as the ratio between the mass () and the amount of substance ...
for a particular gas. A
constitutive relation may also be useful.
Conservation laws
Three conservation laws are used to solve fluid dynamics problems, and may be written in
integral
In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
or
differential form. The conservation laws may be applied to a region of the flow called a ''control volume''. A control volume is a discrete volume in space through which fluid is assumed to flow. The integral formulations of the conservation laws are used to describe the change of mass, momentum, or energy within the control volume. Differential formulations of the conservation laws apply
Stokes' theorem
Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls, or simply the curl theorem, is a theorem in vector calculus on \R^3. Given a vector field, the theorem relates th ...
to yield an expression that may be interpreted as the integral form of the law applied to an infinitesimally small volume (at a point) within the flow.
Classifications
Compressible versus incompressible flow
All fluids are
compressible
In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a f ...
to an extent; that is, changes in pressure or temperature cause changes in density. However, in many situations the changes in pressure and temperature are sufficiently small that the changes in density are negligible. In this case the flow can be modelled as an
incompressible flow
In fluid mechanics, or more generally continuum mechanics, incompressible flow is a flow in which the material density does not vary over time. Equivalently, the divergence of an incompressible flow velocity is zero. Under certain conditions, t ...
. Otherwise the more general
compressible flow
Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressibility, compressible, flows are usually treated as being incompressible flow, incom ...
equations must be used.
Mathematically, incompressibility is expressed by saying that the density of a
fluid parcel
In fluid dynamics, a fluid parcel, also known as a fluid element or material element, is an infinitesimal volume of fluid, identifiable throughout its dynamic history while moving with the fluid flow. As it moves, the mass of a fluid parcel rema ...
does not change as it moves in the flow field, that is,
where is the
material derivative
In continuum mechanics, the material derivative describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material de ...
, which is the sum of
local
Local may refer to:
Geography and transportation
* Local (train), a train serving local traffic demand
* Local, Missouri, a community in the United States
Arts, entertainment, and media
* ''Local'' (comics), a limited series comic book by Bria ...
and
convective derivative
Convection is single or multiphase fluid flow that occurs spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
s. This additional constraint simplifies the governing equations, especially in the case when the fluid has a uniform density.
For flow of gases, to determine whether to use compressible or incompressible fluid dynamics, the
Mach number
The Mach number (M or Ma), often only Mach, (; ) is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound.
It is named after the Austrian physicist and philosopher Erns ...
of the flow is evaluated. As a rough guide, compressible effects can be ignored at Mach numbers below approximately 0.3. For liquids, whether the incompressible assumption is valid depends on the fluid properties (specifically the critical pressure and temperature of the fluid) and the flow conditions (how close to the critical pressure the actual flow pressure becomes).
Acoustic problems always require allowing compressibility, since
sound waves
In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid.
In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the br ...
are compression waves involving changes in pressure and density of the medium through which they propagate.
Newtonian versus non-Newtonian fluids

All fluids, except
superfluids
Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two i ...
, are viscous, meaning that they exert some resistance to deformation: neighbouring parcels of fluid moving at different velocities exert viscous forces on each other. The velocity gradient is referred to as a
strain rate
In mechanics and materials science, strain rate is the time derivative of strain of a material. Strain rate has dimension of inverse time and SI units of inverse second, s−1 (or its multiples).
The strain rate at some point within the mat ...
; it has dimensions .
Isaac Newton
Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
showed that for many familiar fluids such as
water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
and
air
An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
, the
stress due to these viscous forces is linearly related to the strain rate. Such fluids are called
Newtonian fluids
A Newtonian fluid is a fluid in which the viscous stress tensor, viscous stresses arising from its Fluid dynamics, flow are at every point linearly correlated to the local strain rate — the derivative (mathematics), rate of change of its deforma ...
. The coefficient of proportionality is called the fluid's viscosity; for Newtonian fluids, it is a fluid property that is independent of the strain rate.
Non-Newtonian fluids have a more complicated, non-linear stress-strain behaviour. The sub-discipline of
rheology
Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applie ...
describes the stress-strain behaviours of such fluids, which include
emulsion
An emulsion is a mixture of two or more liquids that are normally Miscibility, immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloi ...
s and
slurries
A slurry is a mixture of denser solids suspended in liquid, usually water. The most common use of slurry is as a means of transporting solids or separating minerals, the liquid being a carrier that is pumped on a device such as a centrifugal p ...
, some
viscoelastic
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both Viscosity, viscous and Elasticity (physics), elastic characteristics when undergoing deformation (engineering), deformation. Viscous mate ...
materials such as
blood
Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells.
Blood is com ...
and some
polymer
A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s, and ''sticky liquids'' such as
latex
Latex is an emulsion (stable dispersion) of polymer microparticles in water. Latices are found in nature, but synthetic latices are common as well.
In nature, latex is found as a wikt:milky, milky fluid, which is present in 10% of all floweri ...
,
honey
Honey is a sweet and viscous substance made by several species of bees, the best-known of which are honey bees. Honey is made and stored to nourish bee colonies. Bees produce honey by gathering and then refining the sugary secretions of pl ...
and
lubricants
A lubricant (sometimes shortened to lube) is a substance that helps to reduce friction between surfaces in mutual contact, which ultimately reduces the heat generated when the surfaces move. It may also have the function of transmitting forces ...
.
Inviscid versus viscous versus Stokes flow
The dynamic of fluid parcels is described with the help of
Newton's second law
Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:
# A body re ...
. An accelerating parcel of fluid is subject to inertial effects.
The
Reynolds number
In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to ...
is a
dimensionless quantity
Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into unit of measurement, units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that a ...
which characterises the magnitude of inertial effects compared to the magnitude of viscous effects. A low Reynolds number () indicates that viscous forces are very strong compared to inertial forces. In such cases, inertial forces are sometimes neglected; this flow regime is called
Stokes or creeping flow.
In contrast, high Reynolds numbers () indicate that the inertial effects have more effect on the velocity field than the viscous (friction) effects. In high Reynolds number flows, the flow is often modeled as an
inviscid flow
In fluid dynamics, inviscid flow is the flow of an ''inviscid fluid'' which is a fluid with zero viscosity.
The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the ...
, an approximation in which viscosity is completely neglected. Eliminating viscosity allows the
Navier–Stokes equations
The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
to be simplified into the
Euler equations
In mathematics and physics, many topics are eponym, named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include their own unique function, e ...
. The integration of the Euler equations along a streamline in an inviscid flow yields
Bernoulli's equation
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. For example, for a fluid flowing horizontally Bernoulli's principle states that an increase in the speed occurs simultaneously with a decrease i ...
. When, in addition to being inviscid, the flow is
irrotational
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not chan ...
everywhere, Bernoulli's equation can completely describe the flow everywhere. Such flows are called
potential flow
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity pre ...
s, because the velocity field may be expressed as the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
of a potential energy expression.
This idea can work fairly well when the Reynolds number is high. However, problems such as those involving solid boundaries may require that the viscosity be included. Viscosity cannot be neglected near solid boundaries because the
no-slip condition
In fluid dynamics, the no-slip condition is a Boundary conditions in fluid dynamics, boundary condition which enforces that at a solid boundary, a viscous fluid attains zero bulk velocity. This boundary condition was first proposed by Osborne Reyno ...
generates a thin region of large strain rate, the
boundary layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces ...
, in which
viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
effects dominate and which thus generates
vorticity
In continuum mechanics, vorticity is a pseudovector (or axial vector) field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point an ...
. Therefore, to calculate net forces on bodies (such as wings), viscous flow equations must be used: inviscid flow theory fails to predict
drag forces, a limitation known as the
d'Alembert's paradox
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a paradox discovered in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that – for incompressible and inviscid potential flow – the drag force ...
.
A commonly used model, especially in
computational fluid dynamics
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid dynamics, fluid flows. Computers are used to perform the calculations required ...
, is to use two flow models: the Euler equations away from the body, and
boundary layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces ...
equations in a region close to the body. The two solutions can then be matched with each other, using the
method of matched asymptotic expansions
In mathematics, the method of matched asymptotic expansions is a common approach to finding an accurate approximation to the solution to an equation, or simultaneous equations, system of equations. It is particularly used when solving singular pert ...
.
Steady versus unsteady flow

A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference. For instance, laminar flow over a
sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
is steady in the frame of reference that is stationary with respect to the sphere. In a frame of reference that is stationary with respect to a background flow, the flow is unsteady.
Turbulent
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
flows are unsteady by definition. A turbulent flow can, however, be
statistically stationary. The random velocity field is statistically stationary if all statistics are invariant under a shift in time.
This roughly means that all statistical properties are constant in time. Often, the mean
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
is the object of interest, and this is constant too in a statistically stationary flow.
Steady flows are often more tractable than otherwise similar unsteady flows. The governing equations of a steady problem have one dimension fewer (time) than the governing equations of the same problem without taking advantage of the steadiness of the flow field.
Laminar versus turbulent flow

Turbulence is flow characterized by recirculation,
eddies
In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid ...
, and apparent
random
In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. ...
ness. Flow in which turbulence is not exhibited is called
laminar. The presence of eddies or recirculation alone does not necessarily indicate turbulent flow—these phenomena may be present in laminar flow as well. Mathematically, turbulent flow is often represented via a
Reynolds decomposition
In fluid dynamics and turbulence theory, Reynolds decomposition is a mathematical technique used to separate the expectation value of a quantity from its fluctuations.
Decomposition
For example, for a quantity u the decomposition would be
u(x,y,z ...
, in which the flow is broken down into the sum of an
average
In colloquial, ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean the sum of the numbers divided by ...
component and a perturbation component.
It is believed that turbulent flows can be described well through the use of the
Navier–Stokes equations
The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
.
Direct numerical simulation
A direct numerical simulation (DNS)https://eprints.soton.ac.uk/66182/1/A_primer_on_DNS.pdf "A Primer on Direct Numerical Simulation of Turbulence –
Methods, Procedures and Guidelines", Coleman and Sandberg, 2010 is a simulation in computational ...
(DNS), based on the Navier–Stokes equations, makes it possible to simulate turbulent flows at moderate Reynolds numbers. Restrictions depend on the power of the computer used and the efficiency of the solution algorithm. The results of DNS have been found to agree well with experimental data for some flows.
Most flows of interest have Reynolds numbers much too high for DNS to be a viable option,
[ given the state of computational power for the next few decades. Any flight vehicle large enough to carry a human ( > 3 m), moving faster than is well beyond the limit of DNS simulation ( = 4 million). Transport aircraft wings (such as on an ]Airbus A300
The Airbus A300 is Airbus' first production aircraft and the world's first Twinjet, twin-engine, double-aisle Wide-body aircraft, (wide-body) airliner. It was developed by ''Airbus Industrie GIE'', now merged into Airbus SE, and manufactured f ...
or Boeing 747
The Boeing 747 is a long-range wide-body aircraft, wide-body airliner designed and manufactured by Boeing Commercial Airplanes in the United States between 1968 and 2023.
After the introduction of the Boeing 707, 707 in October 1958, Pan Am ...
) have Reynolds numbers of 40 million (based on the wing chord dimension). Solving these real-life flow problems requires turbulence models for the foreseeable future. Reynolds-averaged Navier–Stokes equations
The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged
equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged ...
(RANS) combined with turbulence modelling
In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios. In spite of decades of research, there is no analytical ...
provides a model of the effects of the turbulent flow. Such a modelling mainly provides the additional momentum transfer by the Reynolds stresses
In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum.
Definition
The veloc ...
, although the turbulence also enhances the heat
In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
and mass transfer
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtra ...
. Another promising methodology is large eddy simulation
Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is ...
(LES), especially in the form of detached eddy simulation
Detached eddy simulation (DES) is a modification of a Reynolds-averaged Navier–Stokes equations (RANS) model in which the model switches to a subgrid scale formulation in regions fine enough for large eddy simulation (LES) calculations.
Details ...
(DES) — a combination of LES and RANS turbulence modelling.
Other approximations
There are a large number of other possible approximations to fluid dynamic problems. Some of the more commonly used are listed below.
* The '' Boussinesq approximation'' neglects variations in density except to calculate buoyancy
Buoyancy (), or upthrust, is the force exerted by a fluid opposing the weight of a partially or fully immersed object (which may be also be a parcel of fluid). In a column of fluid, pressure increases with depth as a result of the weight of t ...
forces. It is often used in free convection
Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
problems where density changes are small.
* ''Lubrication theory
In fluid dynamics, lubrication theory describes the flow of fluids (liquids or gases) in a geometry in which one dimension is significantly smaller than the others. An example is the flow above air hockey tables, where the thickness of the air ...
'' and ''Hele–Shaw flow
Hele-Shaw flow is defined as flow taking place between two parallel flat plates separated by a narrow gap satisfying certain conditions, named after Henry Selby Hele-Shaw, who studied the problem in 1898. Various problems in fluid mechanics can be ...
'' exploits the large aspect ratio
The aspect ratio of a geometry, geometric shape is the ratio of its sizes in different dimensions. For example, the aspect ratio of a rectangle is the ratio of its longer side to its shorter side—the ratio of width to height, when the rectangl ...
of the domain to show that certain terms in the equations are small and so can be neglected.
* ''Slender-body theory In fluid dynamics and electrostatics, slender-body theory is a methodology that can be used to take advantage of the slenderness of a body to obtain an approximation to a field surrounding it and/or the net effect of the field on the body. Principal ...
'' is a methodology used in Stokes flow
Stokes flow (named after George Gabriel Stokes), also named creeping flow or creeping motion,Kim, S. & Karrila, S. J. (2005) ''Microhydrodynamics: Principles and Selected Applications'', Dover. . is a type of fluid flow where advection, advec ...
problems to estimate the force on, or flow field around, a long slender object in a viscous fluid.
* The ''shallow-water equations
The shallow-water equations (SWE) are a set of hyperbolic partial differential equations (or parabolic if viscous shear is considered) that describe the flow below a pressure surface in a fluid (sometimes, but not necessarily, a free surface). T ...
'' can be used to describe a layer of relatively inviscid fluid with a free surface
In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress,
such as the interface between two homogeneous fluids.
An example of two such homogeneous fluids would be a body of water (liquid) and the air in ...
, in which surface gradients are small.
* '' Darcy's law'' is used for flow in porous media
In materials science, a porous medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a fluid (liquid or gas). The sk ...
, and works with variables averaged over several pore-widths.
* In rotating systems, the ''quasi-geostrophic equations
While geostrophic motion refers to the wind that would result from an exact balance between the Coriolis force and horizontal pressure-gradient forces, quasi-geostrophic (QG) motion refers to flows where the Coriolis force and pressure gradient ...
'' assume an almost perfect balance between pressure gradient
In hydrodynamics and hydrostatics, the pressure gradient (typically of air but more generally of any fluid) is a physical quantity that describes in which direction and at what rate the pressure increases the most rapidly around a particular locat ...
s and the Coriolis force
In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
. It is useful in the study of atmospheric dynamics
Meteorology is the scientific study of the Earth's atmosphere and short-term atmospheric phenomena (i.e. weather), with a focus on weather forecasting. It has applications in the military, aviation, energy production, transport, agriculture, ...
.
Multidisciplinary types
Flows according to Mach regimes
While many flows (such as flow of water through a pipe) occur at low Mach number
The Mach number (M or Ma), often only Mach, (; ) is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound.
It is named after the Austrian physicist and philosopher Erns ...
s ( subsonic flows), many flows of practical interest in aerodynamics or in turbomachines occur at high fractions of ( transonic flows) or in excess of it (supersonic
Supersonic speed is the speed of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately . Speeds greater than five times ...
or even hypersonic flows). New phenomena occur at these regimes such as instabilities in transonic flow, shock waves for supersonic flow, or non-equilibrium chemical behaviour due to ionization in hypersonic flows. In practice, each of those flow regimes is treated separately.
Reactive versus non-reactive flows
Reactive flows are flows that are chemically reactive, which finds its applications in many areas, including combustion
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion ...
(IC engine
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal c ...
), propulsion
Propulsion is the generation of force by any combination of pushing or pulling to modify the translational motion of an object, which is typically a rigid body (or an articulated rigid body) but may also concern a fluid. The term is derived from ...
devices (rockets
A rocket (from , and so named for its shape) is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely fr ...
, jet engines
A jet engine is a type of reaction engine, discharging a fast-moving jet (fluid), jet of heated gas (usually air) that generates thrust by jet propulsion. While this broad definition may include Rocket engine, rocket, Pump-jet, water jet, and ...
, and so on), detonations
Detonation () is a type of combustion involving a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it. Detonations propagate supersonically through shock waves with ...
, fire and safety hazards, and astrophysics. In addition to conservation of mass, momentum and energy, conservation of individual species (for example, mass fraction of methane
Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
in methane combustion) need to be derived, where the production/depletion rate of any species are obtained by simultaneously solving the equations of chemical kinetics
Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a ...
.
Magnetohydrodynamics
Magnetohydrodynamics
In physics and engineering, magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydromagnetics) is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single Continuum ...
is the multidisciplinary study of the flow of electrically conducting fluids in electromagnetic
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
fields. Examples of such fluids include plasmas, liquid metals, and salt water
Saline water (more commonly known as salt water) is water that contains a high concentration of dissolved salts (mainly sodium chloride). On the United States Geological Survey (USGS) salinity scale, saline water is saltier than brackish wate ...
. The fluid flow equations are solved simultaneously with Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
of electromagnetism.
Relativistic fluid dynamics
Relativistic fluid dynamics studies the macroscopic and microscopic fluid motion at large velocities comparable to the velocity of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. This branch of fluid dynamics accounts for the relativistic effects both from the special theory of relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper,
"On the Electrodynamics of Moving Bodies", the theory is presen ...
and the general theory of relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physi ...
. The governing equations are derived in Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
for Minkowski spacetime
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.
The model helps show how a s ...
.
Fluctuating hydrodynamics
This branch of fluid dynamics augments the standard hydrodynamic equations with stochastic fluxes that model
thermal fluctuations.
As formulated by Landau
Landau (), officially Landau in der Pfalz (, ), is an autonomous (''kreisfrei'') town surrounded by the Südliche Weinstraße ("Southern Wine Route") district of southern Rhineland-Palatinate, Germany. It is a university town (since 1990), a long ...
and Lifshitz,
a white noise
In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used with this or similar meanings in many scientific and technical disciplines, i ...
contribution obtained from the fluctuation-dissipation theorem of statistical mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
is added to the viscous stress tensor
The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point.
The viscous stres ...
and heat flux
In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density, heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time (physics), time. Its SI units are watts per sq ...
.
Terminology
The concept of pressure is central to the study of both fluid statics and fluid dynamics. A pressure can be identified for every point in a body of fluid, regardless of whether the fluid is in motion or not. Pressure can be measured using an aneroid, Bourdon tube, mercury column, or various other methods.
Some of the terminology that is necessary in the study of fluid dynamics is not found in other similar areas of study. In particular, some of the terminology used in fluid dynamics is not used in fluid statics
In physics, a fluid is a liquid, gas, or other material that may continuously move and deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot r ...
.
Characteristic numbers
Terminology in incompressible fluid dynamics
The concepts of total pressure and dynamic pressure
In fluid dynamics, dynamic pressure (denoted by or and sometimes called velocity pressure) is the quantity defined by:Clancy, L.J., ''Aerodynamics'', Section 3.5
:q = \frac\rho\, u^2
where (in SI units):
* is the dynamic pressure in pascals ...
arise from Bernoulli's equation
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. For example, for a fluid flowing horizontally Bernoulli's principle states that an increase in the speed occurs simultaneously with a decrease i ...
and are significant in the study of all fluid flows. (These two pressures are not pressures in the usual sense—they cannot be measured using an aneroid, Bourdon tube or mercury column.) To avoid potential ambiguity when referring to pressure in fluid dynamics, many authors use the term static pressure
In fluid mechanics the term static pressure refers to a term in Bernoulli's equation written words as ''static pressure + dynamic pressure = total pressure''. Since pressure measurements at any single point in a fluid always give the static pres ...
to distinguish it from total pressure and dynamic pressure. Static pressure
In fluid mechanics the term static pressure refers to a term in Bernoulli's equation written words as ''static pressure + dynamic pressure = total pressure''. Since pressure measurements at any single point in a fluid always give the static pres ...
is identical to pressure and can be identified for every point in a fluid flow field.
A point in a fluid flow where the flow has come to rest (that is to say, speed is equal to zero adjacent to some solid body immersed in the fluid flow) is of special significance. It is of such importance that it is given a special name—a stagnation point
In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero.Clancy, L.J. (1975), ''Aerodynamics'', Pitman Publishing Limited, London. The Bernoulli equation shows that the static pressure is hi ...
. The static pressure at the stagnation point is of special significance and is given its own name—stagnation pressure
In fluid dynamics, stagnation pressure, also
referred to as total pressure, is what the pressure would be if all the kinetic energy of the fluid were to be converted into pressure in a reversable manner.; it is defined as the sum of the free-strea ...
. In incompressible flows, the stagnation pressure at a stagnation point is equal to the total pressure throughout the flow field.
Terminology in compressible fluid dynamics
In a compressible fluid, it is convenient to define the total conditions (also called stagnation conditions) for all thermodynamic state properties (such as total temperature, total enthalpy, total speed of sound). These total flow conditions are a function of the fluid velocity and have different values in frames of reference with different motion.
To avoid potential ambiguity when referring to the properties of the fluid associated with the state of the fluid rather than its motion, the prefix "static" is commonly used (such as static temperature and static enthalpy). Where there is no prefix, the fluid property is the static condition (so "density" and "static density" mean the same thing). The static conditions are independent of the frame of reference.
Because the total flow conditions are defined by isentropic
An isentropic process is an idealized thermodynamic process that is both adiabatic and reversible. The work transfers of the system are frictionless, and there is no net transfer of heat or matter. Such an idealized process is useful in eng ...
ally bringing the fluid to rest, there is no need to distinguish between total entropy and static entropy as they are always equal by definition. As such, entropy is most commonly referred to as simply "entropy".
Applications
See also
* List of publications in fluid dynamics
* List of fluid dynamicists
The following Outline (list), outline is provided as an overview of and topical guide to fluid dynamics:
Below is a structured list of topics in fluid dynamics.
What type of thing is fluid dynamics?
Fluid dynamics can be described as all ...
References
Further reading
*
*
*
*
* Originally published in 1879, the 6th extended edition appeared first in 1932.
* Originally published in 1938.
*
*
Encyclopedia: Fluid dynamics
Scholarpedia
''Scholarpedia'' is an English-language wiki-based online encyclopedia with features commonly associated with Open access (publishing), open-access online academic journals, which aims to have quality content in science and medicine.
''Scholarpe ...
External links
National Committee for Fluid Mechanics Films (NCFMF)
containing films on several subjects in fluid dynamics (in RealMedia
RealMedia is a proprietary multimedia container format (digital), container format created by RealNetworks with the filename extension . RealMedia is used in conjunction with RealVideo and RealAudio, while also being used for Streaming media, st ...
format)
Gallery of fluid motion
"a visual record of the aesthetic and science of contemporary fluid mechanics," from the American Physical Society
The American Physical Society (APS) is a not-for-profit membership organization of professionals in physics and related disciplines, comprising nearly fifty divisions, sections, and other units. Its mission is the advancement and diffusion of ...
List of Fluid Dynamics books
{{Authority control
Piping
Aerodynamics
Continuum mechanics