In
mathematics, a
vector bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to ev ...
is said to be ''flat'' if it is endowed with a
linear connection with vanishing
curvature
In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.
For curves, the can ...
, i.e. a
flat connection.
de Rham cohomology of a flat vector bundle
Let
denote a flat vector bundle, and
be the
covariant derivative
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differ ...
associated to the flat connection on E.
Let
denote the
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
(in fact a
sheaf
Sheaf may refer to:
* Sheaf (agriculture), a bundle of harvested cereal stems
* Sheaf (mathematics), a mathematical tool
* Sheaf toss, a Scottish sport
* River Sheaf, a tributary of River Don in England
* ''The Sheaf'', a student-run newspaper s ...
of
module
Module, modular and modularity may refer to the concept of modularity. They may also refer to:
Computing and engineering
* Modular design, the engineering discipline of designing complex devices using separately designed sub-components
* Mo ...
s over
) of
differential form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many application ...
s on ''X'' with values in ''E''. The covariant derivative defines a degree-1
endomorphism
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a ...
''d'', the differential of
, and the flatness condition is equivalent to the property
.
In other words, the
graded vector space
In mathematics, a graded vector space is a vector space that has the extra structure of a '' grading'' or a ''gradation'', which is a decomposition of the vector space into a direct sum of vector subspaces.
Integer gradation
Let \mathbb be ...
is a
cochain complex. Its cohomology is called the
de Rham cohomology
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adap ...
of ''E'', or de Rham cohomology with coefficients twisted by the local coefficient system ''E''.
Flat trivializations
A trivialization of a flat vector bundle is said to be flat if the
connection form In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.
Historically, connection forms were introduced by Élie Cart ...
vanishes in this trivialization. An equivalent definition of a flat bundle is the choice of a trivializing atlas with locally constant transition maps.
Examples
* Trivial line bundles can have several flat bundle structures. An example is the trivial bundle over
with the
connection form In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.
Historically, connection forms were introduced by Élie Cart ...
s 0 and
. The parallel vector fields are constant in the first case, and proportional to local determinations of the
square root
In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or ⋅ ) is . For example, 4 and −4 are square roots of 16, because .
...
in the second.
* The real
canonical line bundle of a
differential manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
''M'' is a flat line bundle, called the orientation bundle. Its sections are
volume form In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold M of dimension n, a volume form is an n-form. It is an element of the space of sections of t ...
s.
* A
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
is flat if and only if its
Levi-Civita connection
In Riemannian or pseudo Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves ...
gives its tangent vector bundle a flat structure.
See also
*
Vector-valued differential forms
*
Local system, the more general notion of a locally constant sheaf.
*
Orientation character, a characteristic form related to the orientation line bundle, useful to formulate
Twisted Poincaré duality
In mathematics, the twisted Poincaré duality is a theorem removing the restriction on Poincaré duality to oriented manifolds. The existence of a global orientation is replaced by carrying along local information, by means of a local coefficien ...
*
Picard group
In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a globa ...
whose connected component, the
Jacobian variety
In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelian var ...
, is the
moduli space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such ...
of algebraic flat line bundles.
*
Monodromy
In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of '' ...
, or
representations
''Representations'' is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s. It ...
of the
fundamental group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
by
parallel transport
In geometry, parallel transport (or parallel translation) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent b ...
on flat bundles.
*
Holonomy
In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geome ...
, the obstruction to flatness.
Vector bundles