HOME

TheInfoList



OR:

In
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a branch of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a first-countable space is a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
satisfying the "first axiom of countability". Specifically, a space X is said to be first-countable if each point has a
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
neighbourhood basis (local base). That is, for each point x in X there exists a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
N_1, N_2, \ldots of
neighbourhoods A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
of x such that for any neighbourhood N of x there exists an integer i with N_i contained in N. Since every neighborhood of any point contains an
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gerd Dudek, Buschi Niebergall, and Edward Vesala album), 1979 * ''Open'' (Go ...
neighborhood of that point, the neighbourhood basis can be chosen
without loss of generality ''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicat ...
to consist of open neighborhoods.


Examples and counterexamples

The majority of 'everyday' spaces in
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
are first-countable. In particular, every
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
is first-countable. To see this, note that the set of
open ball In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them). These concepts are defin ...
s centered at x with radius 1/n for integers form a countable local base at x. An example of a space that is not first-countable is the cofinite topology on an
uncountable set In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger t ...
(such as the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
). More generally, the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not ...
on an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
over an uncountable field is not first-countable. Another counterexample is the ordinal space \omega_1 + 1 = \left , \omega_1\right/math> where \omega_1 is the
first uncountable ordinal In mathematics, the first uncountable ordinal, traditionally denoted by \omega_1 or sometimes by \Omega, is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. Whe ...
number. The element \omega_1 is a
limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x contains a point of S other than x itself. A ...
of the subset \left , \omega_1\right/math> does not have a countable local base. Since \omega_1 is the only such point, however, the subspace \omega_1 = \left[0, \omega_1\right) is first-countable. The Quotient space (topology)">quotient space \R / \N where the natural numbers on the real line are identified as a single point is not first countable. However, this space has the property that for any subset A and every element x in the closure of A, there is a sequence in A converging to x. A space with this sequence property is sometimes called a Fréchet–Urysohn space. First-countability is strictly weaker than second-countability. Every second-countable space is first-countable, but any uncountable discrete space is first-countable but not second-countable.


Properties

One of the most important properties of first-countable spaces is that given a subset A, a point x lies in the closure of A if and only if there exists a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
\left(x_n\right)_^ in A that converges to x. (In other words, every first-countable space is a Fréchet-Urysohn space and thus also a
sequential space In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of count ...
.) This has consequences for
limits Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2009 ...
and continuity. In particular, if f is a function on a first-countable space, then f has a limit L at the point x if and only if for every sequence x_n \to x, where x_n \neq x for all n, we have f\left(x_n\right) \to L. Also, if f is a function on a first-countable space, then f is continuous if and only if whenever x_n \to x, then f\left(x_n\right) \to f(x). In first-countable spaces, sequential compactness and countable compactness are equivalent properties. However, there exist examples of sequentially compact, first-countable spaces that are not compact (these are necessarily not metrizable spaces). One such space is the ordinal space \left compactly generated. Every Subspace (topology)">subspace of a first-countable space is first-countable. Any countable Product space">product of a first-countable space is first-countable, although uncountable products need not be.


See also

* * * *


References


Bibliography

* * {{DEFAULTSORT:First-Countable Space General topology Properties of topological spaces