HOME

TheInfoList



OR:

In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, a finite group is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
whose underlying set is finite. Finite groups often arise when considering symmetry of
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
s and
permutation group In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to ...
s. The study of finite groups has been an integral part of
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
since it arose in the 19th century. One major area of study has been classification: the
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
(those with no nontrivial
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
) was completed in 2004.


History

During the twentieth century, mathematicians investigated some aspects of the theory of finite groups in great depth, especially the
local theory In physics, the principle of locality states that an object is influenced directly only by its immediate surroundings. A theory that includes the principle of locality is said to be a "local theory". This is an alternative to the concept of ins ...
of finite groups and the theory of solvable and
nilpotent group In mathematics, specifically group theory, a nilpotent group ''G'' is a group that has an upper central series that terminates with ''G''. Equivalently, it has a central series of finite length or its lower central series terminates with . I ...
s. As a consequence, the complete
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
was achieved, meaning that all those
simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The d ...
s from which all finite groups can be built are now known. During the second half of the twentieth century, mathematicians such as Chevalley and Steinberg also increased our understanding of finite analogs of classical groups, and other related groups. One such family of groups is the family of
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
s over
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
s. Finite groups often occur when considering
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. The theory of
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
s, which may be viewed as dealing with "
continuous symmetry In mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some Symmetry in mathematics, symmetries as Motion (physics), motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant u ...
", is strongly influenced by the associated
Weyl group In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections t ...
s. These are finite groups generated by reflections which act on a finite-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. The properties of finite groups can thus play a role in subjects such as
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental p ...
and
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
.


Examples


Permutation groups

The symmetric group S''n'' on a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
of ''n'' symbols is the
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
whose elements are all the
permutations In mathematics, a permutation of a Set (mathematics), set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example ...
of the ''n'' symbols, and whose
group operation In mathematics, a group is a set with an operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is associative, it has an identity element, and ev ...
is the
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography * Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
of such permutations, which are treated as bijective functions from the set of symbols to itself. Since there are ''n''! (''n''
factorial In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times ...
) possible permutations of a set of ''n'' symbols, it follows that the
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
(the number of elements) of the symmetric group S''n'' is ''n''!.


Cyclic groups

A cyclic group Z''n'' is a group all of whose elements are powers of a particular element ''a'' where , the identity. A typical realization of this group is as the complex roots of unity. Sending ''a'' to a primitive root of unity gives an isomorphism between the two. This can be done with any finite cyclic group.


Finite abelian groups

An
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
, also called a commutative group, is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
in which the result of applying the group operation to two group elements does not depend on their order (the axiom of
commutativity In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a p ...
). They are named after
Niels Henrik Abel Niels Henrik Abel ( , ; 5 August 1802 – 6 April 1829) was a Norwegian mathematician who made pioneering contributions in a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility of solvin ...
. An arbitrary finite abelian group is isomorphic to a direct sum of finite cyclic groups of prime power order, and these orders are uniquely determined, forming a complete system of invariants. The
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
of a finite abelian group can be described directly in terms of these invariants. The theory had been first developed in the 1879 paper of Georg Frobenius and Ludwig Stickelberger and later was both simplified and generalized to finitely generated modules over a principal ideal domain, forming an important chapter of
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
.


Groups of Lie type

A group of Lie type is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
closely related to the group ''G''(''k'') of rational points of a reductive
linear algebraic group In mathematics, a linear algebraic group is a subgroup of the group of invertible n\times n matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation M^TM = I_n ...
''G'' with values in the field ''k''. Finite groups of Lie type give the bulk of nonabelian finite simple groups. Special cases include the classical groups, the Chevalley groups, the Steinberg groups, and the Suzuki–Ree groups. Finite groups of Lie type were among the first groups to be considered in mathematics, after cyclic,
symmetric Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
and alternating groups, with the
projective special linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associa ...
s over prime finite fields, PSL(2, ''p'') being constructed by
Évariste Galois Évariste Galois (; ; 25 October 1811 â€“ 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by Nth root, ...
in the 1830s. The systematic exploration of finite groups of Lie type started with
Camille Jordan Marie Ennemond Camille Jordan (; 5 January 1838 – 22 January 1922) was a French mathematician, known both for his foundational work in group theory and for his influential ''Cours d'analyse''. Biography Jordan was born in Lyon and educated at ...
's theorem that the
projective special linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associa ...
PSL(2, ''q'') is simple for ''q'' ≠ 2, 3. This theorem generalizes to projective groups of higher dimensions and gives an important infinite family PSL(''n'', ''q'') of finite simple groups. Other classical groups were studied by Leonard Dickson in the beginning of 20th century. In the 1950s
Claude Chevalley Claude Chevalley (; 11 February 1909 – 28 June 1984) was a French mathematician who made important contributions to number theory, algebraic geometry, class field theory, finite group theory and the theory of algebraic groups. He was a found ...
realized that after an appropriate reformulation, many theorems about
semisimple Lie group In mathematics, a simple Lie group is a connected space, connected nonabelian group, non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple ...
s admit analogues for algebraic groups over an arbitrary field ''k'', leading to construction of what are now called ''Chevalley groups''. Moreover, as in the case of compact simple Lie groups, the corresponding groups turned out to be almost simple as abstract groups (''Tits simplicity theorem''). Although it was known since 19th century that other finite simple groups exist (for example,
Mathieu groups In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objec ...
), gradually a belief formed that nearly all finite simple groups can be accounted for by appropriate extensions of Chevalley's construction, together with cyclic and alternating groups. Moreover, the exceptions, the
sporadic groups In the mathematical classification of finite simple groups, there are a number of Group (mathematics), groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the spora ...
, share many properties with the finite groups of Lie type, and in particular, can be constructed and characterized based on their ''geometry'' in the sense of Tits. The belief has now become a theorem – the
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
. Inspection of the list of finite simple groups shows that groups of Lie type over a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
include all the finite simple groups other than the cyclic groups, the alternating groups, the Tits group, and the 26
sporadic simple group In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups. A simpl ...
s.


Main theorems


Lagrange's theorem

For any finite group ''G'', the
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
(number of elements) of every
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
''H'' of ''G'' divides the order of ''G''. The theorem is named after
Joseph-Louis Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi LagrangiaArthur Cayley Arthur Cayley (; 16 August 1821 – 26 January 1895) was a British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics, and was a professor at Trinity College, Cambridge for 35 years. He ...
, states that every
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
''G'' is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
acting on ''G''. This can be understood as an example of the
group action In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under ...
of ''G'' on the elements of ''G''.


Burnside's theorem

Burnside's theorem in
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
states that if ''G'' is a finite group of
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
''p'q'', where ''p'' and ''q'' are
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s, and ''a'' and ''b'' are
non-negative In mathematics, the sign of a real number is its property of being either positive, negative, or 0. Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign. ...
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, then ''G'' is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.


Feit–Thompson theorem

The Feit–Thompson theorem, or odd order theorem, states that every finite
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
of odd
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
is solvable. It was proved by


Classification of finite simple groups

The
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
is a theorem stating that every finite simple group belongs to one of the following families: * A
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
with prime order; * An
alternating group In mathematics, an alternating group is the Group (mathematics), group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted ...
of degree at least 5; * A simple group of Lie type; * One of the 26
sporadic simple group In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups. A simpl ...
s; * The Tits group (sometimes considered as a 27th sporadic group). The finite simple groups can be seen as the basic building blocks of all finite groups, in a way reminiscent of the way the
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s are the basic building blocks of the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s. The
Jordan–Hölder theorem In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many na ...
is a more precise way of stating this fact about finite groups. However, a significant difference with respect to the case of
integer factorization In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a comp ...
is that such "building blocks" do not necessarily determine uniquely a group, since there might be many non-isomorphic groups with the same
composition series In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many na ...
or, put in another way, the
extension problem In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence :1\to N\;\ove ...
does not have a unique solution. The proof of the theorem consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Gorenstein (d.1992),
Lyons Lyon (Franco-Provençal: ''Liyon'') is a city in France. It is located at the confluence of the rivers Rhône and Saône, to the northwest of the French Alps, southeast of Paris, north of Marseille, southwest of Geneva, Switzerland, north ...
, and
Solomon Solomon (), also called Jedidiah, was the fourth monarch of the Kingdom of Israel (united monarchy), Kingdom of Israel and Judah, according to the Hebrew Bible. The successor of his father David, he is described as having been the penultimate ...
are gradually publishing a simplified and revised version of the proof.


Number of groups of a given order

Given a positive integer ''n'', it is not at all a routine matter to determine how many
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
types of groups of
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
''n'' there are. Every group of
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
order is cyclic, because Lagrange's theorem implies that the cyclic subgroup generated by any of its non-identity elements is the whole group. If ''n'' is the square of a prime, then there are exactly two possible isomorphism types of group of order ''n'', both of which are abelian. If ''n'' is a higher power of a prime, then results of
Graham Higman Graham Higman FRS (19 January 1917 – 8 April 2008) was a prominent English mathematician known for his contributions to group theory. Biography Higman was born in Louth, Lincolnshire, and attended Sutton High School, Plymouth, winning ...
and Charles Sims give asymptotically correct estimates for the number of isomorphism types of groups of order ''n'', and the number grows very rapidly as the power increases. Depending on the prime factorization of ''n'', some restrictions may be placed on the structure of groups of order ''n'', as a consequence, for example, of results such as the
Sylow theorems In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed ...
. For example, every group of order ''pq'' is cyclic when are primes with not divisible by ''q''. For a necessary and sufficient condition, see cyclic number. If ''n'' is squarefree, then any group of order ''n'' is solvable. Burnside's theorem, proved using group characters, states that every group of order ''n'' is solvable when ''n'' is divisible by fewer than three distinct primes, i.e. if , where ''p'' and ''q'' are prime numbers, and ''a'' and ''b'' are non-negative integers. By the Feit–Thompson theorem, which has a long and complicated proof, every group of order ''n'' is solvable when ''n'' is odd. For every positive integer ''n'', most groups of order ''n'' are solvable. To see this for any particular order is usually not difficult (for example, there is, up to isomorphism, one non-solvable group and 12 solvable groups of order 60) but the proof of this for all orders uses the
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
. For any positive integer ''n'' there are at most two simple groups of order ''n'', and there are infinitely many positive integers ''n'' for which there are two non-isomorphic simple groups of order ''n''.


Table of distinct groups of order ''n''


See also

*
Association scheme The theory of association schemes arose in statistics, in the theory of design of experiments, experimental design for the analysis of variance. In mathematics, association schemes belong to both algebra and combinatorics. In algebraic combinatori ...
*
Cauchy's theorem (group theory) In mathematics, specifically group theory, Cauchy's theorem states that if is a finite group and is a prime number dividing the order of (the number of elements in ), then contains an element of order . That is, there is in such that is t ...
*
Classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
* Commuting probability * Finite ring *
Finite-state machine A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number o ...
*
Infinite group In group theory, an area of mathematics, an infinite group is a group whose underlying set contains an infinite number of elements. In other words, it is a group of infinite order. Examples * (Z, +), the group of integers with addition is in ...
*
List of finite simple groups In mathematics, the classification of finite simple groups states that every finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type, or one of 26 sporadic groups. The list below gives all finite simple g ...
*
List of small groups The following list in mathematics contains the finite groups of small order of a group, order up to group isomorphism. Counts For ''n'' = 1, 2, … the number of nonisomorphic groups of order ''n'' is : 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, ...
*
Modular representation theory Modular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field ''K'' of positive characteristic ''p'', necessarily a prime number. As well as h ...
*
Monstrous moonshine In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group ''M'' and modular functions, in particular the ''j'' function. The initial numerical observation was made by John McKay in 1978, ...
*
P-group In mathematics, specifically group theory, given a prime number ''p'', a ''p''-group is a group in which the order of every element is a power of ''p''. That is, for each element ''g'' of a ''p''-group ''G'', there exists a nonnegative integ ...
*
Profinite group In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. ...
*
Representation theory of finite groups The representation theory of groups is a part of mathematics which examines how groups act on given structures. Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are ...


References


Further reading

*


External links

* * * * Small groups o
GroupNames
*

for groups of small order {{Authority control Properties of groups