Field With Two Elements
   HOME

TheInfoList



OR:

(also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
with two elements. is the
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
with the smallest possible number of elements, and is unique if the
additive identity In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element in the set, yields . One of the most familiar additive identities is the number 0 from elementary ma ...
and the
multiplicative identity In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
are denoted respectively and , as usual. The elements of may be identified with the two possible values of a
bit The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented as ...
and to the
Boolean value In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted by 1 and 0, whereas ...
s ''true'' and ''false''. It follows that is fundamental and ubiquitous in
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
and its
logical Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arg ...
foundations.


Definition

GF(2) is the unique field with two elements with its
additive Additive may refer to: Mathematics * Additive function, a function in number theory * Additive map, a function that preserves the addition operation * Additive set-function see Sigma additivity * Additive category, a preadditive category with fin ...
and multiplicative identities respectively denoted and . Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: If the elements of GF(2) are seen as Boolean values, then the addition is the same as that of the
logical XOR Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ (one ...
operation. Since each element equals its
opposite In lexical semantics, opposites are words lying in an inherently incompatible binary relationship. For example, something that is ''even'' entails that it is not ''odd''. It is referred to as a 'binary' relationship because there are two members i ...
, subtraction is thus the same operation as addition. The multiplication of GF(2) is the usual multiplication (see the table below), and on Boolean variables corresponds to the
logical AND In logic, mathematics and linguistics, ''and'' (\wedge) is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdo ...
operation. GF(2) can be identified with the field of the integers modulo , that is, the
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
of the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
Z by the ideal 2Z of all
even number In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The ...
s: . Notations and \mathbb Z_2 may be encountered although they can be confused with the notation of -adic integers.


Properties

Because GF(2) is a field, many of the familiar properties of number systems such as the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s and
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s are retained: * addition has an
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
(0) and an inverse for every element; * multiplication has an identity element (1) and an inverse for every element but 0; * addition and multiplication are
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
and
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
; * multiplication is distributive over addition. Properties that are not familiar from the real numbers include: * every element ''x'' of GF(2) satisfies and therefore ; this means that the characteristic of GF(2) is 2; * every element ''x'' of GF(2) satisfies (i.e. is ''
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
'' with respect to multiplication); this is an instance of
Fermat's little theorem In number theory, Fermat's little theorem states that if is a prime number, then for any integer , the number is an integer multiple of . In the notation of modular arithmetic, this is expressed as a^p \equiv a \pmod p. For example, if and , t ...
. GF(2) is the ''only'' field with this property (Proof: if , then either or . In the latter case, ''x'' must have a multiplicative inverse, in which case dividing both sides by ''x'' gives . All larger fields contain elements other than 0 and 1, and those elements cannot satisfy this property).


Applications

Because of the algebraic properties above, many familiar and powerful tools of mathematics work in GF(2) just as well as other fields. For example, matrix operations, including
matrix inversion In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an ...
, can be applied to matrices with elements in GF(2) (''see''
matrix ring In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication. The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'') (alternat ...
). Any
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
(''V,+'') with the property ''v'' + ''v'' = 0 for every ''v'' in ''V'' is necessarily abelian and can be turned into a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over GF(2) in a natural fashion, by defining 0''v'' = 0 and 1''v'' = ''v'' for all ''v'' in ''V''. This vector space will have a basis, implying that the number of elements of ''V'' must be a power of 2 (or infinite). In modern
computer A computer is a machine that can be Computer programming, programmed to automatically Execution (computing), carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic set ...
s, data are represented with
bit string A bit array (also known as bitmask, bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure. A bit array is effective at exploiting bit-level pa ...
s of a fixed length, called ''
machine word In computing, a word is any Central processing unit, processor design's natural unit of data. A word is a fixed-sized Data (computing), datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits ...
s''. These are endowed with the structure of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over GF(2). The addition of this vector space is the
bitwise operation In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operatio ...
called
XOR Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ (one ...
(exclusive or). The
bitwise AND In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operat ...
is another operation on this vector space, which makes it a
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
, a structure that underlies all
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
. These spaces can also be augmented with a multiplication operation that makes them into a field GF(2''n''), but the multiplication operation cannot be a bitwise operation. When ''n'' is itself a power of two, the multiplication operation can be nim-multiplication; alternatively, for any ''n'', one can use multiplication of polynomials over GF(2) modulo a
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted f ...
(as for instance for the field GF(28) in the description of the
Advanced Encryption Standard The Advanced Encryption Standard (AES), also known by its original name Rijndael (), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant ...
cipher).
Vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s and
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s over GF(2) are widely used in
coding theory Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and computer data storage, data sto ...
, and in particular in
error correcting code In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The centra ...
s and modern
cryptography Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), ...
. For example, many common error correcting codes (such as
BCH code In coding theory, the Bose–Chaudhuri–Hocquenghem codes (BCH codes) form a class of cyclic error-correcting codes that are constructed using polynomials over a finite field (also called a '' Galois field''). BCH codes were invented in ...
s) are
linear code In coding theory, a linear code is an error-correcting code for which any linear combination of Code word (communication), codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although t ...
s over GF(2) (codes defined from vector spaces over GF(2)), or
polynomial code In coding theory, a polynomial code is a type of linear code whose set of valid code words consists of those polynomials (usually of some fixed length) that are divisible by a given fixed polynomial (of shorter length, called the ''generator polyno ...
s (codes defined as quotients of polynomial rings over GF(2)).


Algebraic closure

Like any field, GF(2) has an
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
. This is a field ''F'' which contains GF(2) as a subfield, which is algebraic over GF(2) (i.e. every element of ''F'' is a root of a polynomial with coefficients in GF(2)), and which is
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra h ...
(any non-constant polynomial with coefficients in ''F'' has a root in ''F''). The field ''F'' is uniquely determined by these properties,
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
a
field automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
(i.e. essentially up to the notation of its elements). ''F'' is countable and contains a single copy of each of the finite fields GF(2''n''); the copy of GF(2''n'') is contained in the copy of GF(2''m'') if and only if ''n'' divides ''m.'' The field ''F'' is countable and is the union of all these finite fields. Conway realized that ''F'' can be identified with the
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
\omega^, where the addition and multiplication operations are defined in a natural manner by
transfinite induction Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for a ...
(these operations are however different from the standard addition and multiplication of ordinal numbers). The addition in this field is simple to perform and is akin to Nim-addition; Lenstra has shown that the multiplication can also be performed efficiently.


See also

*
Field with one element In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The nam ...


References

{{reflist Finite fields 2 (number) Binary arithmetic