HOME

TheInfoList



OR:

Feature-oriented scanning (FOS) is a method of precision measurement of surface topography with a scanning probe microscope in which surface features (objects) are used as reference points for microscope probe attachment. With FOS method, by passing from one surface feature to another located nearby, the relative distance between the features and the feature neighborhood topographies are measured. This approach allows to scan an intended area of a surface by parts and then reconstruct the whole image from the obtained fragments. Beside the mentioned, it is acceptable to use another name for the method – object-oriented scanning (OOS). __TOC__


Topography

Any topography element that looks like a hill or a pit in wide sense may be taken as a surface feature. Examples of surface features (objects) are:
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s, interstices,
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s,
grains A grain is a small, hard, dry fruit ( caryopsis) – with or without an attached hull layer – harvested for human or animal consumption. A grain crop is a grain-producing plant. The two main types of commercial grain crops are cereals and le ...
,
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s, clusters,
crystallite A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel Wikt:longulite ...
s,
quantum dot Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
s, nanoislets, pillars, pores, short
nanowire file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm). A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
s, short nanorods, short nanotubes,
virus A virus is a submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are ...
es,
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
,
organelle In cell biology, an organelle is a specialized subunit, usually within a cell (biology), cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as Organ (anatomy), organs are to th ...
s, cells, etc. FOS is designed for high-precision measurement of surface topography (see Fig.) as well as other surface properties and characteristics. Moreover, in comparison with the conventional scanning, FOS allows obtaining a higher spatial resolution. Thanks to a number of techniques embedded in FOS, the distortions caused by thermal drifts and creeps are practically eliminated.


Applications

FOS has the following fields of application: surface
metrology Metrology is the scientific study of measurement. It establishes a common understanding of Unit of measurement, units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to stan ...
, precise probe positioning, automatic surface characterization, automatic surface modification/stimulation, automatic manipulation of nanoobjects, nanotechnological processes of “bottom-up” assembly, coordinated control of analytical and technological probes in multiprobe instruments, control of atomic/molecular assemblers, control of probe nanolithographs, etc.


See also

* Counter-scanning * Feature-oriented positioning


References

1.
Russian translation
is available). 2.
Russian translation
is available). 3. 4. (in Russian). 5. 6. 7. 8. 9. 10. 11. 12.


External links



Research section, Lapshin's Personal Page on SPM & Nanotechnology {{Scanning probe microscopy Microscopes Nanotechnology