HOME

TheInfoList



OR:

In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer.
Wolfgang Rindler Wolfgang Rindler (18 May 1924 – 8 February 2019) was a physicist working in the field of general relativity where he is known for introducing the term "event horizon", Rindler coordinates, and (in collaboration with Roger Penrose) for the use of ...
coined the term in the 1950s. In 1784,
John Michell John Michell (; 25 December 1724 – 21 April 1793) was an English natural philosopher and clergyman who provided pioneering insights into a wide range of scientific fields including astronomy, geology, optics, and gravitation. Considered "o ...
proposed that gravity can be strong enough in the vicinity of massive compact objects that even light cannot escape. At that time, the Newtonian theory of gravitation and the so-called
corpuscular theory of light In optics, the corpuscular theory of light states that light is made up of small discrete particles called " corpuscles" (little particles) which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate ...
were dominant. In these theories, if the
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
of the gravitational influence of a massive object exceeds the speed of light, then light originating inside or from it can escape temporarily but will return. In 1958,
David Finkelstein David Ritz Finkelstein (July 19, 1929 – January 24, 2016) was an emeritus professor of physics at the Georgia Institute of Technology. Biography Born in New York City, Finkelstein obtained his Ph.D. in physics at the Massachusetts Institute ...
used general relativity to introduce a stricter definition of a local
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
event horizon as a boundary beyond which events of any kind cannot affect an outside observer, leading to
information Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random ...
and
firewall Firewall may refer to: * Firewall (computing), a technological barrier designed to prevent unauthorized or unwanted communications between computer networks or hosts * Firewall (construction), a barrier inside a building, designed to limit the spr ...
paradoxes, encouraging the re-examination of the concept of local event horizons and the notion of black holes. Several theories were subsequently developed, some with and some without event horizons. One of the leading developers of theories to describe black holes, Stephen Hawking, suggested that an
apparent horizon In general relativity, an apparent horizon is a surface that is the boundary between light rays that are directed outwards and moving outwards and those directed outward but moving inward. Apparent horizons are not invariant properties of spacetim ...
should be used instead of an event horizon, saying, "gravitational collapse produces apparent horizons but no event horizons." He eventually concluded that "the absence of event horizons means that there are no black holes – in the sense of regimes from which light can't escape to
infinity Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...
." Any object approaching the horizon from the observer's side appears to slow down, never quite crossing the horizon. Due to
gravitational redshift In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well (seem to) lose energy. This loss of energy ...
, its image reddens over time as the object moves away from the observer. In an expanding universe, the speed of expansion reaches — and even exceeds — the speed of light, preventing signals from traveling to some regions. A cosmic event horizon is a real event horizon because it affects all kinds of signals, including
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
, which travel at the speed of light. More specific horizon types include the related but distinct absolute and
apparent horizon In general relativity, an apparent horizon is a surface that is the boundary between light rays that are directed outwards and moving outwards and those directed outward but moving inward. Apparent horizons are not invariant properties of spacetim ...
s found around a black hole. Other distinct types include: * The
Cauchy Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He w ...
and
Killing horizon In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hyp ...
s. * The
photon sphere A photon sphere or photon circle is an area or region of space where gravity is so strong that photons are forced to travel in orbits, which is also sometimes called the last photon orbit. The radius of the photon sphere, which is also the lower ...
s and
ergosphere file:Ergosphere_and_event_horizon_of_a_rotating_black_hole_(no_animation).gif, 300px, In the ergosphere (shown here in light gray), the component ''gtt'' is negative, i.e., acts like a purely spatial metric component. Consequently, timelike or ligh ...
s of the
Kerr solution The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of gen ...
. *
Particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
and
cosmological horizon A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Co ...
s relevant to
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount (lexicographer), Thomas Blount's ''Glossographia'', and in 1731 taken up in ...
. * Isolated and
dynamical horizon In theoretical physics, a dynamical horizon (DH) is a local description (i.e. independent of the global structure of Space–time) of evolving black-hole horizons. In the literature there exist two different mathematical formulations of DHs—the 2 ...
s, which are important in current black hole research.


Cosmic event horizon

In
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount (lexicographer), Thomas Blount's ''Glossographia'', and in 1731 taken up in ...
, the event horizon of the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
is the largest
comoving distance In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to define distances between objects. ''Proper distance'' roughly corresponds to where a distant object would be at a spec ...
from which light emitted ''now'' can ever reach the observer in the future. This differs from the concept of the
particle horizon The particle horizon (also called the cosmological horizon, the comoving horizon (in Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the univers ...
, which represents the largest comoving distance from which light emitted in the ''past'' could reach the observer at a given time. For events that occur beyond that distance, light has not had enough time to reach our location, even if it was emitted at the time the universe began. The evolution of the particle horizon with time depends on the nature of the
expansion of the universe The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
. If the expansion has certain characteristics, parts of the universe will never be observable, no matter how long the observer waits for the light from those regions to arrive. The boundary beyond which events cannot ever be observed is an event horizon, and it represents the maximum extent of the particle horizon. The criterion for determining whether a particle horizon for the universe exists is as follows. Define a
comoving distance In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to define distances between objects. ''Proper distance'' roughly corresponds to where a distant object would be at a spec ...
''dp'' as :d_p=\int_^ \frac \,dt. In this equation, ''a'' is the
scale factor In affine geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a '' scale factor'' that is the same in all directions. The result of uniform scaling is similar ...
, ''c'' is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
, and ''t''0 is the age of the Universe. If (i.e., points arbitrarily as far away as can be observed), then no event horizon exists. If , a horizon is present. Examples of cosmological models without an event horizon are universes dominated by
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
or by
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
. An example of a cosmological model with an event horizon is a universe dominated by the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
(a
de Sitter universe A de Sitter universe is a cosmological solution to the Einstein field equations of general relativity, named after Willem de Sitter. It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are dominat ...
). A calculation of the speeds of the cosmological event and particle horizons was given in a paper on the FLRW cosmological model, approximating the Universe as composed of non-interacting constituents, each one being a perfect fluid.


Apparent horizon of an accelerated particle

If a particle is moving at a constant velocity in a non-expanding universe free of gravitational fields, any event that occurs in that Universe will eventually be observable by the particle, because the forward
light cone In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single event (localized to a single point in space and a single moment in time) and traveling in all directions, would take thro ...
s from these events intersect the particle's
world line The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept in modern physics, and particularly theoretical physics. The concept of a "world line" is distinguished from c ...
. On the other hand, if the particle is accelerating, in some situations light cones from some events never intersect the particle's world line. Under these conditions, an
apparent horizon In general relativity, an apparent horizon is a surface that is the boundary between light rays that are directed outwards and moving outwards and those directed outward but moving inward. Apparent horizons are not invariant properties of spacetim ...
is present in the particle's (accelerating) reference frame, representing a boundary beyond which events are unobservable. For example, this occurs with a uniformly accelerated particle. A spacetime diagram of this situation is shown in the figure to the right. As the particle accelerates, it approaches, but never reaches, the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
with respect to its original reference frame. On the spacetime diagram, its path is a
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
, which asymptotically approaches a 45-degree line (the path of a light ray). An event whose light cone's edge is this asymptote or is farther away than this asymptote can never be observed by the accelerating particle. In the particle's reference frame, there is a boundary behind it from which no signals can escape (an apparent horizon). The distance to this boundary is given by c^2/a, where is the constant
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
of the particle. While approximations of this type of situation can occur in the real world (in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s, for example), a true event horizon is never present, as this requires the particle to be accelerated indefinitely (requiring arbitrarily large amounts of energy and an arbitrarily large apparatus).


Interacting with a cosmic horizon

In the case of a horizon perceived by a uniformly accelerating observer in empty space, the horizon seems to remain a fixed distance from the observer no matter how its surroundings move. Varying the observer's acceleration may cause the horizon to appear to move over time or may prevent an event horizon from existing, depending on the acceleration function chosen. The observer never touches the horizon and never passes a location where it appeared to be. In the case of a horizon perceived by an occupant of a
de Sitter universe A de Sitter universe is a cosmological solution to the Einstein field equations of general relativity, named after Willem de Sitter. It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are dominat ...
, the horizon always appears to be a fixed distance away for a non-accelerating observer. It is never contacted, even by an accelerating observer.


Event horizon of a black hole

One of the best-known examples of an event horizon derives from general relativity's description of a black hole, a celestial object so dense that no nearby matter or radiation can escape its
gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational phenome ...
. Often, this is described as the boundary within which the black hole's
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
is greater than the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. However, a more detailed description is that within this horizon, all
lightlike In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inert ...
paths (paths that light could take) (and hence all paths in the forward
light cone In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single event (localized to a single point in space and a single moment in time) and traveling in all directions, would take thro ...
s of particles within the horizon) are warped so as to fall farther into the hole. Once a particle is inside the horizon, moving into the hole is as inevitable as moving forward in time – no matter in what direction the particle is travelling – and can be thought of as equivalent to doing so, depending on the spacetime coordinate system used. The surface at the
Schwarzschild radius The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteris ...
acts as an event horizon in a non-rotating body that fits inside this radius (although a
rotating black hole A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars (Sun), galaxies, black holes – spin. Types of black holes Ther ...
operates slightly differently). The Schwarzschild radius of an object is proportional to its mass. Theoretically, any amount of matter will become a black hole if compressed into a space that fits within its corresponding Schwarzschild radius. For the mass of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, this radius is approximately ; for
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, it is about . In practice, however, neither Earth nor the Sun have the necessary mass (and, therefore, the necessary gravitational force) to overcome
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
and
neutron degeneracy pressure Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, neu ...
. The minimal mass required for a star to collapse beyond these pressures is the
Tolman–Oppenheimer–Volkoff limit The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the mass of cold, nonrotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. If the mass of the said star reaches the limit it will collapse to ...
, which is approximately three solar masses. According to the fundamental gravitational collapse models, an event horizon forms before the singularity of a black hole. If all the stars in the Milky Way would gradually aggregate towards the galactic center while keeping their proportionate distances from each other, they will all fall within their joint Schwarzschild radius long before they are forced to collide. Up to the collapse in the far future, observers in a galaxy surrounded by an event horizon would proceed with their lives normally. Black hole event horizons are widely misunderstood. Common, although erroneous, is the notion that black holes "vacuum up" material in their neighborhood, where in fact they are no more capable of seeking out material to consume than any other gravitational attractor. As with any mass in the universe, matter must come within its gravitational scope for the possibility to exist of capture or consolidation with any other mass. Equally common is the idea that matter can be observed falling into a black hole. This is not possible. Astronomers can detect only accretion disks around black holes, where material moves with such speed that friction creates high-energy radiation that can be detected (similarly, some matter from these accretion disks is forced out along the axis of spin of the black hole, creating visible jets when these streams interact with matter such as interstellar gas or when they happen to be aimed directly at Earth). Furthermore, a distant observer will never actually see something reach the horizon. Instead, while approaching the hole, the object will seem to go ever more slowly, while any light it emits will be further and further redshifted. Topologically, the event horizon is defined from the
causal structure In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. Introduction In modern physics (especially general relativity) spacetime is represented by a Lorentzian m ...
as the past null cone of future conformal timelike infinity. The black hole event horizon is
teleological Teleology (from and )Partridge, Eric. 1977''Origins: A Short Etymological Dictionary of Modern English'' London: Routledge, p. 4187. or finalityDubray, Charles. 2020 912Teleology" In ''The Catholic Encyclopedia'' 14. New York: Robert Appleton ...
in nature, meaning that we need to know the entire future spacetime of the universe to determine the current location of the horizon, which is essentially impossible. Because of the purely theoretical nature of the event horizon boundary, the traveling object does not necessarily experience strange effects and does, in fact, pass through the calculatory boundary in a finite amount of
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval ...
.


Interacting with black hole horizons

A misconception concerning event horizons, especially
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
event horizons, is that they represent an immutable surface that destroys objects that approach them. In practice, all event horizons appear to be some distance away from any observer, and objects sent towards an event horizon never appear to cross it from the sending observer's point of view (as the horizon-crossing event's
light cone In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single event (localized to a single point in space and a single moment in time) and traveling in all directions, would take thro ...
never intersects the observer's
world line The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept in modern physics, and particularly theoretical physics. The concept of a "world line" is distinguished from c ...
). Attempting to make an object near the horizon remain stationary with respect to an observer requires applying a force whose magnitude increases unboundedly (becoming infinite) the closer it gets. In the case of the horizon around a black hole, observers stationary with respect to a distant object will all agree on where the horizon is. While this seems to allow an observer lowered towards the hole on a rope (or rod) to contact the horizon, in practice this cannot be done. The proper distance to the horizon is finite, so the length of rope needed would be finite as well, but if the rope were lowered slowly (so that each point on the rope was approximately at rest in
Schwarzschild coordinates In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of ''nested round spheres''. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coord ...
), the
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
(
G-force The gravitational force equivalent, or, more commonly, g-force, is a measurement of the type of force per unit mass – typically acceleration – that causes a perception of weight, with a g-force of 1 g (not gram in mass measure ...
) experienced by points on the rope closer and closer to the horizon would approach infinity, so the rope would be torn apart. If the rope is lowered quickly (perhaps even in
freefall In Newtonian physics, free fall is any motion of a body where gravity is the only force acting upon it. In the context of general relativity, where gravitation is reduced to a space-time curvature, a body in free fall has no force acting on i ...
), then indeed the observer at the bottom of the rope can touch and even cross the event horizon. But once this happens it is impossible to pull the bottom of rope back out of the event horizon, since if the rope is pulled taut, the forces along the rope increase without bound as they approach the event horizon and at some point the rope must break. Furthermore, the break must occur not at the event horizon, but at a point where the second observer can observe it. Assuming that the possible
apparent horizon In general relativity, an apparent horizon is a surface that is the boundary between light rays that are directed outwards and moving outwards and those directed outward but moving inward. Apparent horizons are not invariant properties of spacetim ...
is far inside the event horizon, or there is none, observers crossing a black hole event horizon would not actually see or feel anything special happen at that moment. In terms of visual appearance, observers who fall into the hole perceive the eventual apparent horizon as a black impermeable area enclosing the singularity. Other objects that had entered the horizon area along the same radial path but at an earlier time would appear below the observer as long as they are not entered inside the apparent horizon, and they could exchange messages. Increasing
tidal force The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient (difference in strength) in gravitational field from the other body; it is responsible for diverse phenomen ...
s are also locally noticeable effects, as a function of the mass of the black hole. In realistic stellar black holes,
spaghettification In astrophysics, spaghettification (sometimes referred to as the noodle effect) is the vertical stretching and horizontal compression of objects into long thin shapes (rather like spaghetti) in a very strong, non-homogeneous gravitational field ...
occurs early: tidal forces tear materials apart well before the event horizon. However, in
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
s, which are found in centers of galaxies, spaghettification occurs inside the event horizon. A human astronaut would survive the fall through an event horizon only in a black hole with a mass of approximately 10,000
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es or greater.


Beyond general relativity

A cosmic event horizon is commonly accepted as a real event horizon, whereas the description of a local black hole event horizon given by general relativity is found to be incomplete and controversial. When the conditions under which local event horizons occur are modeled using a more comprehensive picture of the way the Universe works, that includes both relativity and
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, local event horizons are expected to have properties that are different from those predicted using general relativity alone. At present, it is expected by the
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical a ...
mechanism that the primary impact of quantum effects is for event horizons to possess a
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
and so emit radiation. For black holes, this manifests as
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical a ...
, and the larger question of how the black hole possesses a temperature is part of the topic of
black hole thermodynamics In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the developm ...
. For accelerating particles, this manifests as the
Unruh effect The Unruh effect (also known as the Fulling–Davies–Unruh effect) is a kinematic prediction of quantum field theory that an accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe ...
, which causes space around the particle to appear to be filled with matter and radiation. According to the controversial
black hole firewall A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at (or near) the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald ...
hypothesis, matter falling into a black hole would be burned to a crisp by a high energy "firewall" at the event horizon. An alternative is provided by the complementarity principle, according to which, in the chart of the far observer, infalling matter is thermalized at the horizon and reemitted as Hawking radiation, while in the chart of an infalling observer matter continues undisturbed through the inner region and is destroyed at the singularity. This hypothesis does not violate the
no-cloning theorem In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theore ...
as there is a single copy of the information according to any given observer. Black hole complementarity is actually suggested by the scaling laws of
strings String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
approaching the event horizon, suggesting that in the Schwarzschild chart they stretch to cover the horizon and thermalize into a Planck length-thick membrane. A complete description of local event horizons generated by gravity is expected to, at minimum, require a theory of quantum gravity. One such candidate theory is
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's ...
. Another such candidate theory is loop quantum gravity.


See also

*
Abraham–Lorentz force In the physics of electromagnetism, the Abraham–Lorentz force (also Lorentz–Abraham force) is the recoil force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called ...
*
Acoustic metric In mathematical physics, a metric describes the arrangement of relative distances within a surface or volume, usually measured by signals passing through the region – essentially describing the intrinsic geometry of the region. An acoustic metri ...
* Beyond black holes *
Black hole electron In physics, there is a speculative hypothesis that, if there were a black hole with the same mass, charge and angular momentum as an electron, it would share other properties of the electron. Most notably, Brandon Carter showed in 1968 that the mag ...
* Black hole starship *
Cosmic censorship hypothesis The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity. Singularities that arise in the solutions of Einstein's equations are typically ...
*
Dynamical horizon In theoretical physics, a dynamical horizon (DH) is a local description (i.e. independent of the global structure of Space–time) of evolving black-hole horizons. In the literature there exist two different mathematical formulations of DHs—the 2 ...
*
Event Horizon Telescope The Event Horizon Telescope (EHT) is a large Astronomical interferometer, telescope array consisting of a global network of radio telescopes. The EHT project combines data from several very-long-baseline interferometry (VLBI) stations around Ear ...
*
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical a ...
*
Kugelblitz (astrophysics) A kugelblitz is a theoretical astrophysical object predicted by general relativity. It is a concentration of heat, light or radiation so intense that its energy forms an event horizon and becomes self-trapped. In other words, if enough radiati ...
*
Micro black hole Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny (<1 ) Rindler coordinates In relativistic physics, the coordinates of a ''hyperbolically accelerated reference frame'' constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle ...


Notes


References


Further reading

* ''
The Universe in a Nutshell ''The Universe in a Nutshell'' is a 2001 book about theoretical physics by Stephen Hawking. It is generally considered a sequel and was created to update the public concerning developments since the multi-million-copy bestseller '' A Brief Histo ...
'' by Stephen Hawking *
Abhay Ashtekar and Badri Krishnan, "Isolated and Dynamical Horizons and Their Applications", Living Rev. Relativity, 7, (2004), 10; Online Article, cited February 2009.
{{DEFAULTSORT:Event Horizon Astrophysics Black holes Physical phenomena General relativity Terms in science and technology