Eddy-current Testing
   HOME

TheInfoList



OR:

Eddy-current testing (also commonly seen as eddy current testing and ECT) is one of many
electromagnetic testing Electromagnetic testing (ET), as a form of nondestructive testing, is the process of inducing electric currents or magnetic fields or both inside a test object and observing the electromagnetic response. If the test is set up properly, a defect i ...
methods used in
nondestructive testing Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), n ...
(NDT) making use of
electromagnetic induction Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk ...
to detect and characterize surface and sub-surface flaws in
conductive In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is gener ...
materials.


History

Eddy current testing (ECT) as a technique for testing finds its roots in
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
.
Eddy currents Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magn ...
were first observed by
François Arago Dominique François Jean Arago ( ca, Domènec Francesc Joan Aragó), known simply as François Arago (; Catalan: ''Francesc Aragó'', ; 26 February 17862 October 1853), was a French mathematician, physicist, astronomer, freemason, supporter of t ...
in 1824, but French physicist
Léon Foucault Jean Bernard Léon Foucault (, ; ; 18 September 1819 – 11 February 1868) was a French physicist best known for his demonstration of the Foucault pendulum, a device demonstrating the effect of Earth's rotation. He also made an early measurement ...
is credited with discovering them in 1855. ECT began largely as a result of the English scientist
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
's discovery of
electromagnetic induction Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk ...
in 1831. Faraday discovered that when there is a closed path through which current can circulate and a time-varying magnetic field passes through a conductor (or vice versa), an
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
flows through this conductor. In 1879, another English-born scientist,
David Edward Hughes David Edward Hughes (16 May 1830 – 22 January 1900), was a British-American inventor, practical experimenter, and professor of music known for his work on the printing telegraph and the microphone. He is generally considered to have bee ...
, demonstrated how the properties of a coil change when placed in contact with metals of different conductivity and permeability, which was applied to metallurgical sorting tests. Much of the development of ECT as a
nondestructive testing Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), n ...
technique for industrial applications was carried out during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposin ...
in
Germany Germany,, officially the Federal Republic of Germany, is a country in Central Europe. It is the second most populous country in Europe after Russia, and the most populous member state of the European Union. Germany is situated betwe ...
. Professor
Friedrich Förster Friedrich may refer to: Names *Friedrich (surname), people with the surname ''Friedrich'' *Friedrich (given name), people with the given name ''Friedrich'' Other *Friedrich (board game), a board game about Frederick the Great and the Seven Years' ...
while working for the Kaiser-Wilhelm Institute (now the
Kaiser Wilhelm Society The Kaiser Wilhelm Society for the Advancement of Science (German: ''Kaiser-Wilhelm-Gesellschaft zur Förderung der Wissenschaften'') was a German scientific institution established in the German Empire in 1911. Its functions were taken over by ...
) adapted eddy current technology to industrial use, developing instruments measuring conductivity and sorting mixed ferrous components. After the war, in 1948, Förster founded a company, now called the Foerster Group where he made great strides in developing practical ECT instruments and marketing them.Nikhil Jahain
"The Rebirth of Eddy Current Testing"
2014, retrieved July 1, 2015
Eddy current testing is now a widely used and well understood inspection technique for flaw detection, as well as thickness and conductivity measurements. Frost & Sullivan analysis in the global NDT equipment market in 2012 estimated the magnetic and electromagnetic NDT equipment market at $220 million, which includes conventional eddy current, magnetic particle inspection, eddy current array, and remote-field testing. This market is projected to grow at 7.5% compounded annual growth rate to approximately $315 million by 2016.


ECT principle

In its most basic form — the single-element ECT probe — a coil of conductive wire is excited with an alternating electrical current. This wire coil produces an alternating
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
around itself. The magnetic field oscillates at the same frequency as the current running through the coil. When the coil approaches a conductive material, currents opposite to the ones in the coil are induced in the material — eddy currents. Variations in the
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
and
magnetic permeability In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William ...
of the test object, and the presence of defects causes a change in eddy current and a corresponding change in phase and amplitude that can be detected by measuring the impedance changes in the coil, which is a telltale sign of the presence of defects. This is the basis of standard (pancake coil) ECT. NDT kits can be used in the eddy current testing process. ECT has a very wide range of applications. Since ECT is electrical in nature, it is limited to conductive material. There are also physical limits to generating eddy currents and depth of penetration (
skin depth Skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the con ...
).


Applications

The two major applications of eddy current testing are surface inspection and tubing inspections. Surface inspection is used extensively in the aerospace industry, but also in the
petrochemical industry The petrochemical industry is concerned with the production and trade of petrochemicals. A major part is constituted by the plastics (polymer) industry. It directly interfaces with the petroleum industry, especially the downstream sector. Compan ...
. The technique is very sensitive and can detect tight cracks. Surface inspection can be performed both on ferromagnetic and non-ferromagnetic materials. Tubing inspection is generally limited to non-ferromagnetic tubing and is known as conventional eddy current testing. Conventional ECT is used for inspecting steam generator tubing in nuclear plants and heat exchangers tubing in power and petrochemical industries. The technique is very sensitive to detect and size pits. Wall loss or corrosion can be detected but sizing is not accurate. A variation of conventional ECT for partially magnetic materials is full saturation ECT. In this technique, permeability variations are suppressed by applying a magnetic field. The saturation probes contain conventional eddy current coils and magnets. This inspection is used on partially ferromagnetic materials such as nickel alloys, duplex alloys, and thin-ferromagnetic materials such as ferritic chromium molybdenum stainless steel. The application of a saturation eddy current technique depends on the permeability of the material, tube thickness, and diameter. A method used for carbon steel tubing is remote field eddy current testing. This method is sensitive to general wall loss and not sensitive to small pits and cracks.


ECT on surfaces

When it comes to surface applications, the performance of any given inspection technique depends greatly on the specific conditions — mostly the types of materials and defects, but also surface conditions, etc. However, in most situations, the following are true: * Effective on coatings/paint: yes * Computerized record keeping: partial * 3D/Advanced imaging: none * User dependence: high * Speed: low * Post-inspection analysis: none * Requires chemicals/consumables: no


Other applications

ECT is also useful in making electrical conductivity and coating thickness measurements, among others.


Other eddy current testing techniques

To circumvent some of the shortcomings of conventional ECT, other eddy current testing techniques were developed with various successes.


Eddy current array

Eddy current array (ECA) and conventional ECT share the same basic working principles. ECA technology provides the ability to electronically drive an array of coils ( multiple coils) arranged in specific pattern called a topology that generates a sensitivity profile suited to the target defects. Data acquisition is achieved by
multiplexing In telecommunications and computer networking, multiplexing (sometimes contracted to muxing) is a method by which multiple analog or digital signals are combined into one signal over a shared medium. The aim is to share a scarce resource - a ...
the coils in a special pattern to avoid mutual
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the ...
between the individual coils. The benefits of ECA are: * Faster inspections * Wider coverage * Less operator dependence — array probes yield more consistent results compared to manual raster scans * Better detection capabilities * Easier analysis because of simpler scan patterns * Improved positioning and sizing because of encoded data * Array probes can easily be designed to be flexible or shaped to specifications, making hard-to-reach areas easier to inspect ECA technology provides a remarkably powerful tool and saves significant time during inspections. ECA inspection in carbon steel welds is regulated b
ASTM standard E3052


Lorentz force eddy current testing

A different, albeit physically closely related challenge is the detection of deeply lying flaws and inhomogeneities in electrically conducting solid materials. In the traditional version of eddy current testing an alternating (AC) magnetic field is used to induce eddy currents inside the material to be investigated. If the material contains a crack or flaw which make the spatial distribution of the electrical conductivity nonuniform, the path of the eddy currents is perturbed and the impedance of the coil which generates the AC magnetic field is modified. By measuring the impedance of this coil, a crack can hence be detected. Since the eddy currents are generated by an AC magnetic field, their penetration into the subsurface region of the material is limited by the skin effect. The applicability of the traditional version of eddy current testing is therefore limited to the analysis of the immediate vicinity of the surface of a material, usually of the order of one millimeter. Attempts to overcome this fundamental limitation using low frequency coils and superconducting magnetic field sensors have not led to widespread applications. A recent technique, referred to as Lorentz force eddy current testing (LET),Uhlig, R. P., Zec, M., Brauer, H. and Thess, A. 2012 "Lorentz Force Eddy Current Testing:a Prototype Model". Journal of Nondestructive Evaluation, 31, 357–372 exploits the advantages of applying DC magnetic fields and relative motion providing deep and relatively fast testing of electrically conducting materials. In principle, LET represents a modification of the traditional eddy current testing from which it differs in two aspects, namely (i) how eddy currents are induced and (ii) how their perturbation is detected. In LET eddy currents are generated by providing the relative motion between the conductor under test and a permanent magnet(see figure). If the magnet is passing by a defect, the Lorentz force acting on it shows a distortion whose detection is the key for the LET working principle. If the object is free of defects, the resulting Lorentz force remains constant.


See also

*
Eddy current Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a mag ...
*
Nondestructive testing Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), n ...
* Alternating current field measurement *
Cover Meter A cover meter is an instrument to locate rebars and measure the exact concrete cover. Rebar detectors are less sophisticated devices that can only locate metallic objects below the surface. Due to the cost-effective design, the pulse-induction m ...
*
Metal detector A metal detector is an instrument that detects the nearby presence of metal. Metal detectors are useful for finding metal objects on the surface, underground, and under water. The unit itself, consist of a control box, and an adjustable shaft, ...
*
Skin effect Skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the co ...


References

{{Reflist


External links


Eddy Current Array Tutorial
* ttp://www.joe.buckley.net/papers/eddyc.pdf Intro to Eddy Current Testingby Joseph M. Buckley (pdf, 429 kB)
Eddy Current Testing at Level 2
International Atomic Energy Agency, Vienna, 2011 (pdf 5.6 MB).

* ttp://www.tu-ilmenau.de/lorentz-force/ Official web page of Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing Groupbr>Video on eddy current testing
Karlsruhe University of Applied Sciences Nondestructive testing