HOME

TheInfoList



OR:

Artist's impression of candidate exomoon Kepler-1625b I orbiting its planet. An exomoon or extrasolar moon is a
natural satellite A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriv ...
that orbits an
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first det ...
or other non-stellar extrasolar body. Exomoons are difficult to detect and confirm using current techniques, and to date there have been no confirmed exomoon detections. However, observations from missions such as
Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws of p ...
have observed a number of candidates. Two potential exomoons that may orbit
rogue planet A rogue planet, also termed a free-floating planet (FFP) or an isolated planetary-mass object (iPMO), is an interstellar object of planetary mass which is not gravitationally bound to any star or brown dwarf. Rogue planets may originate from ...
s have also been detected by
microlensing Gravitational microlensing is an astronomical phenomenon caused by the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronome ...
. In September 2019, astronomers reported that the observed dimmings of Tabby's Star may have been produced by fragments resulting from the disruption of an orphaned exomoon. Some exomoons may be potential habitats for extraterrestrial life.


Definition and designation

Although traditional usage implies
moons A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriva ...
orbit a
planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
, the discovery of
brown dwarf Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big en ...
s with planet-sized satellites blurs the distinction between planets and moons, due to the low mass of brown dwarfs. This confusion is resolved by the
International Astronomical Union The International Astronomical Union (IAU; , UAI) is an international non-governmental organization (INGO) with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach, education, and developmen ...
(IAU) declaration that "Objects with true masses below the limiting mass for thermonuclear fusion of deuterium that orbit stars, brown dwarfs or stellar remnants and that have a mass ratio with the central object below the L4/L5 instability (M/Mcentral < 2/(25+) are planets." The IAU definition does not address the naming convention for the satellites of free-floating objects that are less massive than brown dwarfs and below the deuterium limit (the objects are typically referred to as free-floating planets,
rogue planet A rogue planet, also termed a free-floating planet (FFP) or an isolated planetary-mass object (iPMO), is an interstellar object of planetary mass which is not gravitationally bound to any star or brown dwarf. Rogue planets may originate from ...
s, low-mass brown dwarfs or isolated planetary-mass objects). The satellites of these objects are typically referred to as exomoons in the literature. Exomoons take their designation from that of their
parent body A parent body in meteoritics is the celestial body from which originates a meteorite or a class of meteorites. Identification It is easiest to correlate a meteorite with a parent body when the parent body still exists. This is the case for Lun ...
plus a capital
Roman numeral Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, ea ...
; thus, Kepler-1625b orbits Kepler-1625 (synonymous with Kepler-1625a) and itself may be orbited by Kepler-1625b I (no Kepler-1625b II is known, nor is I known to have a submoon).


Characteristics

Characteristics of any extrasolar satellite are likely to vary, as do the Solar System's
moons A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriva ...
. For extrasolar giant planets orbiting within their stellar
habitable zone In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressu ...
, there is the prospect that
terrestrial planet A terrestrial planet, tellurian planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate, rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to ...
-sized satellite may be capable of supporting life. In August 2019, astronomers reported that an exomoon in the WASP-49b exoplanet system may be volcanically active.


Orbital inclination

For impact-generated moons of
terrestrial planet A terrestrial planet, tellurian planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate, rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to ...
s not too far from their star, with a large planet–moon distance, it is expected that the orbital planes of moons will tend to be aligned with the planet's orbit around the star due to tides from the star, but if the planet–moon distance is small it may be inclined. For
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" was originally synonymous with "giant planet". However, in the 1990s, it became known that Uranu ...
s, the orbits of moons will tend to be aligned with the giant planet's equator because these formed in circumplanetary disks.Moon formation and orbital evolution in extrasolar planetary systems-A literature review
, K Lewis – EPJ Web of Conferences, 2011 – epj-conferences.org


Lack of moons around planets close to their stars

Planets close to their stars on circular orbits will tend to despin and become
tidally locked Tidal locking between a pair of co-orbiting astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where a tidally locked ...
. As the planet's rotation slows down the radius of a
synchronous orbit A synchronous orbit is an orbit in which an orbiting body (usually a satellite) has a period equal to the average rotational period of the body being orbited (usually a planet), and in the same direction of rotation as that body. Simplified meani ...
of the planet moves outwards from the planet. For planets tidally locked to their stars, the distance from the planet at which the moon will be in a synchronous orbit around the planet is outside the
Hill sphere The Hill sphere is a common model for the calculation of a Sphere of influence (astrodynamics), gravitational sphere of influence. It is the most commonly used model to calculate the spatial extent of gravitational influence of an astronomical ...
of the planet. The Hill sphere of the planet is the region where its gravity dominates that of the star so it can hold on to its moons. Moons inside the synchronous orbit radius of a planet will spiral into the planet. Therefore, if the synchronous orbit is outside the Hill sphere, then all moons will spiral into the planet. If the synchronous orbit is not three-body stable then moons outside this radius will escape orbit before they reach the synchronous orbit. A study on tidal-induced migration offered a feasible explanation for this lack of exomoons. It showed the physical evolution of host planets (i.e. interior structure and size) plays a major role in their final fate: synchronous orbits can become transient states and moons are prone to be stalled in semi-asymptotic semimajor axes, or even ejected from the system, where other effects can appear. In turn, this would have a great impact on the detection of extrasolar satellites.


Detection methods

The existence of exomoons around many
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first det ...
s is theorized. Despite the great successes of planet hunters with
Doppler spectroscopy Doppler spectroscopy (also known as the radial-velocity method, or colloquially, the wobble method) is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in ...
of the host star, exomoons cannot be found with this technique. This is because the resultant shifted stellar spectra due to the presence of a planet plus additional satellites would behave identically to a single point-mass moving in orbit of the host star. In recognition of this, there have been several other methods proposed for detecting exomoons, including: * Direct imaging *
Microlensing Gravitational microlensing is an astronomical phenomenon caused by the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronome ...
*
Pulsar timing Methods of detecting exoplanets usually rely on indirect strategies – that is, they do not directly Astrophotography, image the planet but deduce its existence from another signal. Any planet is an extremely faint light source compared to its ...
* Transit timing effects *
Transit method Methods of detecting exoplanets usually rely on indirect strategies – that is, they do not directly image the planet but deduce its existence from another signal. Any planet is an extremely faint light source compared to its parent star. For e ...


Direct imaging

Direct imaging of an exoplanet is extremely challenging due to the large difference in brightness between the star and exoplanet as well as the small size and irradiance of the planet. These problems are greater for exomoons in most cases. However, it has been theorized that tidally heated exomoons could shine as brightly as some exoplanets.
Tidal force The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction. It is the ...
s can heat up an exomoon because energy is dissipated by differential forces on it. Io, a tidally heated moon orbiting
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, has volcanoes powered by tidal forces. If a tidally heated exomoon is sufficiently tidally heated and is distant enough from its star for the moon's light not to be drowned out, it would be possible for a telescope such as the
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, Lis ...
to image it.


Doppler spectroscopy of host planet

Doppler spectroscopy is an indirect detection method that measures the velocity shift and resulting stellar spectrum shift associated with an orbiting planet. This method is also known as the Radial Velocity method. It is most successful for main sequence stars. The spectra of exoplanets have been successfully partially retrieved for several cases, including
HD 189733 b HD 189733 b is an exoplanet in the constellation of Vulpecula approximately away from the Solar System. Astronomers in France discovered the planet orbiting the star HD 189733 on October 5, 2005, by observing its transit across the star's face. ...
and
HD 209458 b HD 209458 b is an exoplanet, specifically a hot Jupiter, that orbits the solar analog HD 209458 in the constellation Pegasus, some from the Solar System. The radius of the planet's orbit is , or one-eighth the radius of Mercury's orbit (). Th ...
. The quality of the retrieved spectra is significantly more affected by noise than the stellar spectrum. As a result, the
spectral resolution The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum. It is usually denoted by \Delta\lambda, and is closely related to the resolvi ...
, and number of retrieved spectral features, is much lower than the level required to perform Doppler spectroscopy of the exoplanet.


Radio wave emissions from the host planet's magnetosphere

During its orbit, Io's ionosphere interacts with
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
's
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
, to create a frictional current that causes radio wave emissions. These are called "Io-controlled decametric emissions" and the researchers believe finding similar emissions near known exoplanets could be key to predicting where other moons exist.


Microlensing

In 2002, Cheongho Han & Wonyong Han proposed
microlensing Gravitational microlensing is an astronomical phenomenon caused by the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronome ...
be used to detect exomoons. The authors found detecting satellite signals in lensing light curves will be very difficult because the signals are seriously smeared out by the severe finite-source effect even for events involved with source stars with small angular radii.


Pulsar timing

In 2008, Lewis, Sackett, and Mardling of the
Monash University Monash University () is a public university, public research university based in Melbourne, Victoria (state), Victoria, Australia. Named after World War I general Sir John Monash, it was founded in 1958 and is the second oldest university in the ...
, Australia, proposed using
pulsar timing Methods of detecting exoplanets usually rely on indirect strategies – that is, they do not directly Astrophotography, image the planet but deduce its existence from another signal. Any planet is an extremely faint light source compared to its ...
to detect the moons of pulsar planets. The authors applied their method to the case of PSR B1620-26 b and found that a stable moon orbiting this planet could be detected, if the moon had a separation of about one-fiftieth of that of the orbit of the planet around the pulsar and a mass ratio to the planet of 5% or larger.


Transit timing effects

In 2007, physicists A. Simon, K. Szatmáry, and Gy. M. Szabó published a research note titled 'Determination of the size, mass, and density of “exomoons” from photometric transit timing variations'. In 2009, David Kipping published a paper outlining how by combining multiple observations of variations in the time of mid-transit (TTV, caused by the planet leading or trailing the planet–moon system's
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
when the pair are oriented roughly perpendicular to the line of sight) with variations of the transit duration (TDV, caused by the planet moving along the direction path of transit relative to the planet–moon system's barycenter when the moon–planet axis lies roughly along the line of sight) a unique exomoon signature is produced. Furthermore, the work demonstrated how both the mass of the exomoon and its orbital distance from the planet could be determined using the two effects. In a later study, Kipping concluded that
habitable zone In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressu ...
exomoons could be detected by the
Kepler Space Telescope The Kepler space telescope is a defunct space telescope launched by NASA in 2009 to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric orb ...
using the TTV and TDV effects.


Transit method (star-planet-moon systems)

When an exoplanet passes in front of the host star, a small dip in the light received from the star may be observed. The transit method is currently the most successful and responsive method for detecting exoplanets. This effect, also known as occultation, is proportional to the square of the planet's radius. If a planet and a moon pass in front of a host star, both objects should produce a dip in the observed light. A planet–moon eclipse may also occur during the transit, but such events have an inherently low probability.


Transit method (planet-moon systems)

If the host planet is directly imaged, then transits of an exomoon may be observable. When an exomoon passes in front of the host planet, a small dip in the light received from the directly-imaged planet may be detected. Exomoons of directly imaged exoplanets and free-floating planets are predicted to have a high transit probability and occurrence rate. Moons as small as Io or
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
should be detectable with the
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, Lis ...
using this method, but this search method requires a substantial amount of observation time.


Orbital sampling effects

If a glass bottle is held up to the light it is easier to see through the middle of the glass than it is near the edges. Similarly, a sequence of samples of a moon's position will be more bunched up at the edges of the moon's orbit of a planet than in the middle. If a moon orbits a planet that transits its star then the moon will also transit the star and this bunching up at the edges may be detectable in the transit light curves if a sufficient number of measurements are made. The larger the star the greater the number of measurements needed to create observable bunching. The
Kepler telescope The Kepler space telescope is a defunct space telescope launched by NASA in 2009 to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric orb ...
data may contain enough data to detect moons around red dwarfs using orbital sampling effects but won't have enough data for Sun-like stars.


Indirect detection around white dwarfs

The atmosphere of
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
s can be polluted with
metals A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. These properties are all associated with having electrons available at the Fermi level, as against no ...
and in a few cases, the white dwarfs are surrounded by a
debris disk A debris disk (American English), or debris disc ( Commonwealth English), is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris ...
. Usually, this pollution is caused by
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
s or
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s, but tidally disrupted exomoons were also proposed in the past as a source of white dwarf pollution. In 2021 Klein and collaborators discovered that the white dwarfs GD 378 and GALEXJ2339 had an unusually high pollution with
beryllium Beryllium is a chemical element; it has Symbol (chemistry), symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with ...
. The researchers conclude that
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
,
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
or
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
atoms must have been subjected to
MeV In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
collisions with
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s in order to create this excess of beryllium. In one proposed scenario, the beryllium excess is caused by a tidally disrupted exomoon. In this scenario a moon-forming icy disk exists around a
giant planet A giant planet, sometimes referred to as a jovian planet (''Jove'' being another name for the Roman god Jupiter (mythology), Jupiter), is a diverse type of planet much larger than Earth. Giant planets are usually primarily composed of low-boiling ...
, which orbits the white dwarf. The strong
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
of such a giant planet accelerates
stellar wind A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
particles, such as protons, and directs them into the disk. The accelerated proton collides with
water ice Water ice may refer to: *Ice formed by water (as opposed to other substances) *In ice climbing, ice made from flowing water (as opposed to ice from precipitation) *The alternate term for various similar frozen fruit-flavoured desserts: ** Italian ic ...
in the disk, creating elements like beryllium,
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
, and
lithium Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
in a spallation reaction. These three elements are relatively rare in the universe as they are destroyed in the process of stellar fusion. A
moonlet A moonlet, minor moon, minor natural satellite, or minor satellite is a particularly small natural satellite orbiting a planet, dwarf planet, or other minor planet. Up until 1995, moonlets were only hypothetical components of Saturn's F-ring ...
forming in this kind of disk would have a higher beryllium, boron and lithium abundance. The study also predicted that the mid-sized moons of
Saturn Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
, for example, Mimas, should be enriched in Be, B, and Li.


Candidates


Detection projects

There are several missions underway now using some of the methods described above, which will find many more candidate exomoons and be able to confirm or disprove some candidates.
PLATO Plato ( ; Greek language, Greek: , ; born  BC, died 348/347 BC) was an ancient Greek philosopher of the Classical Greece, Classical period who is considered a foundational thinker in Western philosophy and an innovator of the writte ...
, for example, is expected to launch in 2026. As part of the ''Kepler'' mission, the Hunt for Exomoons with Kepler (HEK) project was intended to detect exomoons, and generated some of the candidates still discussed today.


Habitability

left, Artist's impression of a hypothetical Earth-like moon around a Saturn-like exoplanet The habitability of exomoons has been considered in at least two studies published in peer-reviewed journals. René Heller & Rory Barnes considered stellar and planetary illumination on moons as well as the effect of eclipses on their orbit-averaged surface illumination. They also considered
tidal heating Tidal heating (also known as tidal working or tidal flexing) occurs through the tidal friction processes: orbital and rotational energy is dissipated as heat in either (or both) the surface ocean or interior of a planet or satellite. When an objec ...
as a threat to their habitability. In Sect. 4 in their paper, they introduce a new concept to define the habitable orbits of moons. Referring to the concept of the circumstellar habitable zone for planets, they define an inner border for a moon to be habitable around a certain planet and call it the circumplanetary "habitable edge". Moons closer to their planet than the habitable edge are uninhabitable. In a second study, René Heller then included the effect of eclipses into this concept as well as constraints from a satellite's orbital stability. He found that, depending on a moon's orbital eccentricity, there is a minimum mass for stars to host habitable moons at around 0.2 solar masses. Taking as an example the smaller Europa, at less than 1% the mass of the Earth, Lehmer et al. found if it were to end up near to Earth orbit it would only be able to hold onto its atmosphere for a few million years. However, for any larger, Ganymede-sized moons venturing into its solar system's habitable zone, an atmosphere and surface water could be retained indefinitely. Models for moon formation suggest the formation of even more massive moons than Ganymede is common around many of the super-Jovian exoplanets. Earth-sized exoplanets in the habitable zone around M-dwarfs are often
tidally locked Tidal locking between a pair of co-orbiting astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where a tidally locked ...
to the host star. This has the effect that one hemisphere always faces the star, while the other remains in darkness. An exomoon in an M-dwarf system does not face this challenge, as it is tidally locked to the planet and it would receive light for both hemispheres. Martínez-Rodríguez et al. studied the possibility of exomoons around planets that orbit M-dwarfs in the habitable zone. While they found 33 exoplanets from earlier studies that lie in the habitable zone, only four could host
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
- to
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
-mass exomoons for timescales longer than 0.8 Gyr (
HIP 12961 HIP 12961 is a star with an exoplanetary companion in the equatorial constellation of Eridanus. It is too faint to be visible to the naked eye, with an apparent visual magnitude of 10.24. The distance to this system can be estimated from ...
b, HIP 57050 b, Gliese 876 b and c). For this mass range the exomoons could probably not hold onto their atmosphere. The researchers increased the mass for the exomoons and found that exomoons with the mass of
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
around IL Aquarii b and c could be stable on timescales above the Hubble time. The CHEOPS mission could detect exomoons around the brightest M-dwarfs or
ESPRESSO Espresso (, ) is a concentrated form of coffee produced by forcing hot water under high pressure through finely ground coffee beans. Originating in Italy, espresso has become one of the most popular coffee-brewing methods worldwide. It is cha ...
could detect the Rossiter–McLaughlin effect caused by the exomoons. Both methods require a transiting exoplanet, which is not the case for these four candidates. Like an exoplanet, an exomoon can potentially become tidally locked to its primary. However, since the exomoon's primary is an exoplanet, it would continue to rotate relative to its star after becoming tidally locked, and thus would still experience a day/night cycle indefinitely. The possible exomoon candidate transiting 2MASS J1119-1137AB lies in the habitable zone of its host (at least initially until the planet cools), but it is unlikely complex life has formed as the system is only 10
Myr Million years ago, abbreviated as Mya, Myr (megayear) or Ma (megaannum), is a unit of time equal to (i.e. years), or approximately 31.6 teraseconds. Usage Myr is in common use in fields such as Earth science and cosmology. Myr is also used w ...
old. If confirmed, the exomoon may be similar to primordial earth and characterization of its atmosphere with the
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, Lis ...
could perhaps place limits on the time scale for the formation of life.


See also

* * * * * * *
Subsatellite A subsatellite, also known as a submoon or informally a moonmoon, is a "moon of a moon" or a hypothetical natural satellite that orbits the moon of a planet. It is inference, inferred from the empirical study of natural satellites in the Solar S ...
, also known as a submoon or moonmoon *


References


External links


Shadow Moons: The Unknown Sub-Worlds that Might Harbor Life




Position statement on the definition of a planet. (IAU)
The Hunt for Exomoons with Kepler (HEK): I. Description of a New Observational Project
{{portal bar, Astronomy, Stars, Outer space
Moons A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriva ...
category:hypothetical moons category:planetary satellite systems Hypothetical astronomical objects