An exact (significance) test is a
statistical test
A statistical hypothesis test is a method of statistical inference used to decide whether the data provide sufficient evidence to reject a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. ...
such that if the
null hypothesis
The null hypothesis (often denoted ''H''0) is the claim in scientific research that the effect being studied does not exist. The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data o ...
is true, then all
assumptions made during the derivation of the distribution of the
test statistic
Test statistic is a quantity derived from the sample for statistical hypothesis testing.Berger, R. L.; Casella, G. (2001). ''Statistical Inference'', Duxbury Press, Second Edition (p.374) A hypothesis test is typically specified in terms of a tes ...
are met. Using an exact test provides a
significance test that maintains the
type I error rate of the test (
) at the desired significance level of the test. For example, an exact test at a
significance level of
, when repeated over many samples where the
null hypothesis
The null hypothesis (often denoted ''H''0) is the claim in scientific research that the effect being studied does not exist. The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data o ...
is true, will reject at most
of the time. This is in contrast to an ''approximate test'' in which the desired type I error rate is only
approximately maintained (i.e.: the test might reject > 5% of the time), while this approximation may be made as close to
as desired by making the sample size sufficiently large.
Exact tests that are based on discrete
test statistic
Test statistic is a quantity derived from the sample for statistical hypothesis testing.Berger, R. L.; Casella, G. (2001). ''Statistical Inference'', Duxbury Press, Second Edition (p.374) A hypothesis test is typically specified in terms of a tes ...
s may be conservative, indicating that the actual rejection rate lies below the nominal significance level
. As an example, this is the case for
Fisher's exact test and its more powerful alternative,
Boschloo's test. If the test statistic is continuous, it will reach the significance level exactly.
Parametric tests, such as those used in
exact statistics, are exact tests when the parametric assumptions are fully met, but in practice, the use of the term ''exact'' (significance) ''test'' is reserved for non-parametric tests, i.e., tests that do not rest on parametric assumptions. However, in practice, most implementations of non-parametric test software use asymptotical algorithms to obtain the significance value, which renders the test non-exact.
Hence, when a result of statistical analysis is termed an “exact test” or specifies an “exact
p-value”, this implies that the test is defined without parametric assumptions and is evaluated without making use of approximate algorithms. In principle, however, this could also signify that a parametric test has been employed in a situation where all parametric assumptions are fully met, but it is in most cases impossible to prove this completely in a real-world situation. Exceptions in which it is certain that parametric tests are exact include tests based on the binomial or Poisson distributions. The term
permutation test is sometimes used as a synonym for exact test, but it should be kept in mind that all permutation tests are exact tests, but not all exact tests are permutation tests.
Formulation
The basic equation underlying exact tests is
:
where:
:*x is the actual observed outcome,
:*Pr(y) is the probability under the null hypothesis of a potentially observed outcome y,
:*''T''(y) is the value of the test statistic for an outcome y, with larger values of ''T'' representing cases which notionally represent greater departures from the null hypothesis,
and where the sum ranges over all outcomes y (including the observed one) that have the same value of the test statistic obtained for the observed sample x, or a larger one.
Example: Pearson's chi-squared test versus an exact test
A simple example of this concept involves the observation that
Pearson's chi-squared test is an approximate test. Suppose Pearson's chi-squared test is used to ascertain whether a six-sided die is "fair", indicating that it renders each of the six possible outcomes equally often. If the die is thrown ''n'' times, then one
"expects" to see each outcome ''n''/6 times. The test statistic is
:
where ''X''
''k'' is the number of times outcome ''k'' is observed. If the null hypothesis of "fairness" is true, then the
probability distribution
In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical descri ...
of the test statistic can be made as close as desired to the chi-squared distribution with
5 degrees of freedom by making the sample size ''n'' sufficiently large. On the other hand, if ''n'' is small, then the probabilities based on chi-squared distributions may not be sufficiently close approximations. Finding the exact probability that this test statistic exceeds a certain value would then require a
combinatorial enumeration of all outcomes of the experiment that gives rise to such a large value of the test statistic. It is then questionable whether the same test statistic ought to be used. A
likelihood-ratio test might be preferred, and the test statistic might not be a monotone function of the one above.
Example: Fisher's exact test
Fisher's exact test, based on the work of
Ronald Fisher
Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962) was a British polymath who was active as a mathematician, statistician, biologist, geneticist, and academic. For his work in statistics, he has been described as "a genius who a ...
and
E. J. G. Pitman in the 1930s, is exact because the sampling distribution (conditional on the marginals) is known exactly. This should be compared with
Pearson's chi-squared test, which (although it tests the same null) is not exact because the distribution of the test statistic is only asymptotically correct.
See also
*
Exact statistics
*
Optimal discriminant analysis
References
*
Ronald Fisher
Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962) was a British polymath who was active as a mathematician, statistician, biologist, geneticist, and academic. For his work in statistics, he has been described as "a genius who a ...
(1954) ''
Statistical Methods for Research Workers''. Oliver and Boyd.
* Mehta, C.R.; Patel, N.R. (1998). "Exact Inference for Categorical Data". In P. Armitage and T. Colton, eds., ''Encyclopedia of Biostatistics'', Chichester: John Wiley, pp. 1411–1422
unpublished preprint*
{{statistics, inference, collapsed
^
de:Statistischer Test#Exakter Test