HOME

TheInfoList



OR:

The history of life on
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
traces the processes by which living and extinct
organism An organism is any life, living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have be ...
s evolved, from the earliest emergence of life to the present day. Earth formed about 4.5 billion years ago (abbreviated as ''Ga'', for '' gigaannum'') and evidence suggests that life emerged prior to 3.7 Ga. The similarities among all known present-day
species A species () is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of Taxonomy (biology), ...
indicate that they have diverged through the process of
evolution Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
from a common ancestor. The earliest clear evidence of life comes from
biogenic A biogenic substance is a product made by or of life forms. While the term originally was specific to metabolite compounds that had toxic effects on other organisms, it has developed to encompass any constituents, secretions, and metabolites of p ...
carbon signatures and
stromatolite Stromatolites ( ) or stromatoliths () are layered Sedimentary rock, sedimentary formation of rocks, formations (microbialite) that are created mainly by Photosynthesis, photosynthetic microorganisms such as cyanobacteria, sulfate-reducing micr ...
fossils discovered in 3.7 billion-year-old metasedimentary rocks from western
Greenland Greenland is an autonomous territory in the Danish Realm, Kingdom of Denmark. It is by far the largest geographically of three constituent parts of the kingdom; the other two are metropolitan Denmark and the Faroe Islands. Citizens of Greenlan ...
. In 2015, possible "remains of biotic life" were found in 4.1 billion-year-old rocks in
Western Australia Western Australia (WA) is the westernmost state of Australia. It is bounded by the Indian Ocean to the north and west, the Southern Ocean to the south, the Northern Territory to the north-east, and South Australia to the south-east. Western Aust ...
. There is further evidence of possibly the oldest forms of life in the form of fossilized
microorganism A microorganism, or microbe, is an organism of microscopic scale, microscopic size, which may exist in its unicellular organism, single-celled form or as a Colony (biology)#Microbial colonies, colony of cells. The possible existence of unseen ...
s in hydrothermal vent precipitates from the Nuvvuagittuq Belt, that may have lived as early as 4.28 billion years ago, not long after the oceans formed 4.4 billion years ago, and after the Earth formed 4.54 billion years ago. "A version of this article appears in print on March 2, 2017, Section A, Page 9 of the New York edition with the headline: Artful Squiggles in Rocks May Be Earth's Oldest Fossils." These earliest fossils, however, may have originated from non-biological processes. Microbial mats of coexisting
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
and
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
were the dominant form of life in the early
Archean The Archean ( , also spelled Archaean or Archæan), in older sources sometimes called the Archaeozoic, is the second of the four geologic eons of Earth's history of Earth, history, preceded by the Hadean Eon and followed by the Proterozoic and t ...
eon, and many of the major steps in early evolution are thought to have taken place in this environment. The evolution of
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
by
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
, around 3.5 Ga, eventually led to a buildup of its waste product,
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, in the oceans. After free oxygen saturated all available reductant substances on the
Earth's surface Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
, it built up in the atmosphere, leading to the Great Oxygenation Event around 2.4 Ga. The earliest evidence of
eukaryote The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
s (complex cells with
organelle In cell biology, an organelle is a specialized subunit, usually within a cell (biology), cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as Organ (anatomy), organs are to th ...
s) dates from 1.85 Ga, likely due to symbiogenesis between anaerobic archaea and aerobic proteobacteria in co-adaptation against the new oxidative stress. While eukaryotes may have been present earlier, their diversification accelerated when aerobic
cellular respiration Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cell ...
by the
endosymbiont An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualism (biology), mutualistic relationship. Examples are nitrogen-fixing bacteria (called rhizobia), whi ...
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
provided a more abundant source of biological energy. Around 1.6 Ga, some eukaryotes gained the ability to photosynthesize via endosymbiosis with cyanobacteria, and gave rise to various
algae Algae ( , ; : alga ) is an informal term for any organisms of a large and diverse group of photosynthesis, photosynthetic organisms that are not plants, and includes species from multiple distinct clades. Such organisms range from unicellular ...
that eventually overtook cyanobacteria as the dominant primary producers. At around 1.7 Ga,
multicellular organism A multicellular organism is an organism that consists of more than one cell (biology), cell, unlike unicellular organisms. All species of animals, Embryophyte, land plants and most fungi are multicellular, as are many algae, whereas a few organism ...
s began to appear, with differentiated cells performing specialised functions. While early organisms reproduced asexually, the primary method of reproduction for the vast majority of
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenome ...
organisms, including almost all
eukaryotes The eukaryotes ( ) constitute the domain of Eukaryota or Eukarya, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, seaweeds, and many unicellular organisms are eukaryotes. They constitute a major group of ...
(which includes
animal Animals are multicellular, eukaryotic organisms in the Biology, biological Kingdom (biology), kingdom Animalia (). With few exceptions, animals heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, ...
s and
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s), is
sexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote tha ...
, the fusion of male and female reproductive cells (
gamete A gamete ( ) is a Ploidy#Haploid and monoploid, haploid cell that fuses with another haploid cell during fertilization in organisms that Sexual reproduction, reproduce sexually. Gametes are an organism's reproductive cells, also referred to as s ...
s) to create a
zygote A zygote (; , ) is a eukaryote, eukaryotic cell (biology), cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individ ...
. The origin and evolution of sexual reproduction remain a puzzle for biologists, though it is thought to have evolved from a single-celled eukaryotic ancestor. * * While
microorganism A microorganism, or microbe, is an organism of microscopic scale, microscopic size, which may exist in its unicellular organism, single-celled form or as a Colony (biology)#Microbial colonies, colony of cells. The possible existence of unseen ...
s formed the earliest
terrestrial ecosystem Terrestrial ecosystems are ecosystems that are found on land. Examples include tundra, taiga, temperate deciduous forest, tropical rain forest, grassland, deserts. Terrestrial ecosystems differ from aquatic ecosystems by the predominant presen ...
s at least 2.7 Ga, the evolution of plants from freshwater
green algae The green algae (: green alga) are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/ Streptophyta. The land plants ...
dates back to about 1 billion years ago. Microorganisms are thought to have paved the way for the inception of land plants in the
Ordovician The Ordovician ( ) is a geologic period and System (geology), system, the second of six periods of the Paleozoic Era (geology), Era, and the second of twelve periods of the Phanerozoic Eon (geology), Eon. The Ordovician spans 41.6 million years f ...
period. Land plants were so successful that they are thought to have contributed to the Late Devonian extinction event as early tree '' Archaeopteris'' drew down CO2 levels, leading to global cooling and lowered sea levels, while their roots increased rock weathering and nutrient run-offs which may have triggered algal bloom
anoxic event An anoxic event describes a period wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic ( anoxic and sulfidic) waters. Although anoxic events have not happened for millions of years, the geol ...
s.
Bilateria Bilateria () is a large clade of animals characterised by bilateral symmetry during embryonic development. This means their body plans are laid around a longitudinal axis with a front (or "head") and a rear (or "tail") end, as well as a left� ...
, animals having a left and a right side that are mirror images of each other, appeared by 555 Ma (million years ago). Ediacara biota appeared during the
Ediacaran The Ediacaran ( ) is a geological period of the Neoproterozoic geologic era, Era that spans 96 million years from the end of the Cryogenian Period at 635 Million years ago, Mya to the beginning of the Cambrian Period at 538.8 Mya. It is the last ...
period, while
vertebrate Vertebrates () are animals with a vertebral column (backbone or spine), and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain. The vertebrates make up the subphylum Vertebra ...
s, along with most other modern
phyla Phyla, the plural of ''phylum'', may refer to: * Phylum, a biological taxon between Kingdom and Class * by analogy, in linguistics, a large division of possibly related languages, or a major language family which is not subordinate to another Phy ...
originated about during the Cambrian explosion. During the
Permian The Permian ( ) is a geologic period and System (stratigraphy), stratigraphic system which spans 47 million years, from the end of the Carboniferous Period million years ago (Mya), to the beginning of the Triassic Period 251.902 Mya. It is the s ...
period, synapsids, including the ancestors of
mammal A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
s, dominated the land. The
Permian–Triassic extinction event The Permian–Triassic extinction event (also known as the P–T extinction event, the Late Permian extinction event, the Latest Permian extinction event, the End-Permian extinction event, and colloquially as the Great Dying,) was an extinction ...
killed most complex species of its time, . During the recovery from this catastrophe, archosaurs became the most abundant land vertebrates; one archosaur group, the
dinosaur Dinosaurs are a diverse group of reptiles of the clade Dinosauria. They first appeared during the Triassic Geological period, period, between 243 and 233.23 million years ago (mya), although the exact origin and timing of the #Evolutio ...
s, dominated the
Jurassic The Jurassic ( ) is a Geological period, geologic period and System (stratigraphy), stratigraphic system that spanned from the end of the Triassic Period million years ago (Mya) to the beginning of the Cretaceous Period, approximately 143.1 Mya. ...
and
Cretaceous The Cretaceous ( ) is a geological period that lasted from about 143.1 to 66 mya (unit), million years ago (Mya). It is the third and final period of the Mesozoic Era (geology), Era, as well as the longest. At around 77.1 million years, it is the ...
periods. After the
Cretaceous–Paleogene extinction event The Cretaceous–Paleogene (K–Pg) extinction event, also known as the K–T extinction, was the extinction event, mass extinction of three-quarters of the plant and animal species on Earth approximately 66 million years ago. The event cau ...
killed off the non-avian dinosaurs, mammals increased rapidly in size and diversity. Such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. Only a very small percentage of species have been identified: one estimate claims that Earth may have 1 trillion species, because "identifying every microbial species on Earth presents a huge challenge." Only 1.75–1.8 million species have been named "A version of this article appears in print on November 9, 2014, Section SR, Page 6 of the New York edition with the headline: Prehistory's Brilliant Future." and 1.8 million documented in a central database. The currently living species represent less than one percent of all species that have ever lived on Earth.


Earliest history of Earth

The oldest
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
fragments found on Earth are about 4.54 billion years old; this, coupled primarily with the dating of ancient
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
deposits, has put the estimated age of Earth at around that time. * * The
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
has the same composition as Earth's crust but does not contain an
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
-rich core like the Earth's. Many scientists think that about 40 million years after the formation of Earth, it collided with a body the size of Mars, throwing crust material into the orbit that formed the Moon. Another
hypothesis A hypothesis (: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess o ...
is that the Earth and Moon started to coalesce at the same time but the Earth, having a much stronger
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
than the early Moon, attracted almost all the iron particles in the area. Until 2001, the oldest rocks found on Earth were about 3.8 billion years old, leading scientists to estimate that the Earth's surface had been molten until then. Accordingly, they named this part of Earth's history the Hadean. However, analysis of zircons formed 4.4 Ga indicates that Earth's crust solidified about 100 million years after the planet's formation and that the planet quickly acquired oceans and an
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
, which may have been capable of supporting life. Evidence from the Moon indicates that, from 4 to 3.8 Ga, it suffered a Late Heavy Bombardment by debris that was left over from the formation of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, and the Earth should have experienced an even heavier bombardment due to its stronger gravity. While there is no direct evidence of conditions on Earth 4 to 3.8 Ga, there is no reason to think that the Earth was not also affected by this late heavy bombardment. This event may well have stripped away any previous atmosphere and oceans; in this case gases and water from
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
impacts may have contributed to their replacement, although
outgassing Outgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (whic ...
from
volcano A volcano is commonly defined as a vent or fissure in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most oft ...
es on Earth would have supplied at least half. However, if subsurface microbial life had evolved by this point, it would have survived the bombardment.


Earliest evidence for life on Earth

The earliest identified organisms were minute and relatively featureless, and their fossils looked like small rods that are very difficult to tell apart from structures that arise through abiotic physical processes. The oldest undisputed evidence of life on Earth, interpreted as fossilized bacteria, dates to 3 Ga. Other finds in rocks dated to about 3.5 Ga have been interpreted as bacteria, with
geochemical Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the ...
evidence also seeming to show the presence of life 3.8 Ga. However, these analyses were closely scrutinized, and non-biological processes were found which could produce all of the "signatures of life" that had been reported. While this does not prove that the structures found had a non-biological origin, they cannot be taken as clear evidence for the presence of life. Geochemical signatures from rocks deposited 3.4 Ga have been interpreted as evidence for life. Evidence for fossilized microorganisms considered to be 3.77 billion to 4.28 billion years old was found in the Nuvvuagittuq Greenstone Belt in Quebec, Canada, although the evidence is disputed as inconclusive.


Origins of life on Earth

Most biologists reason that all living organisms on Earth must share a single last universal ancestor, because it would be virtually impossible that two or more separate lineages could have independently developed the many complex biochemical mechanisms common to all living organisms. According to a different scenario a single last universal ancestor, e.g. a "first cell" or a first individual precursor cell has never existed. Instead, the early biochemical evolution of life led to diversification through the development of a multiphenotypical population of pre-cells from which the precursor cells ( protocells) of the three domains of life emerged. Thus, the formation of cells was a successive process. See , below.


Independent emergence on Earth

Life on Earth is based on
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and
water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
. Carbon provides stable frameworks for complex chemicals and can be easily extracted from the environment, especially from
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
. There is no other chemical element whose properties are similar enough to carbon's to be called an analogue;
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
, the element directly below carbon on the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
, does not form very many complex stable molecules, and because most of its compounds are water-insoluble and because
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundan ...
is a hard and abrasive solid in contrast to
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
at temperatures associated with living things, it would be more difficult for organisms to extract. The elements boron and
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
have more complex chemistries but suffer from other limitations relative to carbon. Water is an excellent
solvent A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
and has two other useful properties: the fact that ice floats enables aquatic organisms to survive beneath it in winter; and its molecules have electrically negative and positive ends, which enables it to form a wider range of compounds than other solvents can. Other good solvents, such as
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
, are liquid only at such low temperatures that chemical reactions may be too slow to sustain life, and lack water's other advantages. Organisms based on alternative biochemistry may, however, be possible on other planets. Research on how life might have emerged from non-living chemicals focuses on three possible starting points: self-replication, an organism's ability to produce offspring that are very similar to itself; metabolism, its ability to feed and repair itself; and external
cell membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
s, which allow food to enter and waste products to leave, but exclude unwanted substances. Research on abiogenesis still has a long way to go, since theoretical and
empirical Empirical evidence is evidence obtained through sense experience or experimental procedure. It is of central importance to the sciences and plays a role in various other fields, like epistemology and law. There is no general agreement on how t ...
approaches are only beginning to make contact with each other.


Replication first: RNA world

Even the simplest members of the three modern domains of life use
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
to record their "recipes" and a complex array of
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
molecules to "read" these instructions and use them for growth, maintenance and self-replication. The discovery that some RNA molecules can catalyze both their own replication and the construction of proteins led to the hypothesis of earlier life-forms based entirely on RNA. These ribozymes could have formed an RNA world in which there were individuals but no species, as
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
s and
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the e ...
s would have meant that offspring were likely to have different
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
s from their parents, and
evolution Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
occurred at the level of genes rather than organisms. RNA would later have been replaced by DNA, which can build longer, more stable genomes, strengthening heritability and expanding the capabilities of individual organisms. Ribozymes remain as the main components of ribosomes, the "protein factories" in modern cells. Evidence suggests the first RNA molecules formed on Earth prior to 4.17 Ga. Although short self-replicating RNA molecules have been artificially produced in laboratories, doubts have been raised about whether natural non-biological synthesis of RNA is possible. * * The earliest "ribozymes" may have been formed of simpler
nucleic acid Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nuclei ...
s such as PNA, TNA or GNA, which would have been replaced later by RNA. In 2003, it was proposed that porous metal sulfide precipitates would assist RNA synthesis at about and ocean-bottom pressures near hydrothermal vents. Under this hypothesis,
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
membranes would be the last major cell components to appear and, until then, the protocells would be confined to the pores.


Membranes first: Lipid world

It has been suggested that double-walled "bubbles" of lipids like those that form the external membranes of cells may have been an essential first step. Experiments that simulated the conditions of the early Earth have reported the formation of lipids, and these can spontaneously form liposomes, double-walled "bubbles", and then reproduce themselves. Although they are not intrinsically information-carriers as nucleic acids are, they would be subject to
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
for longevity and reproduction. Nucleic acids such as RNA might then have formed more easily within the liposomes than outside.


The clay hypothesis

RNA is complex and there are doubts about whether it can be produced non-biologically in the wild. Some
clay Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, ). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impuriti ...
s, notably
montmorillonite Montmorillonite is a very soft phyllosilicate group of minerals that form when they precipitate from water solution as microscopic crystals, known as clay. It is named after Montmorillon in France. Montmorillonite, a member of the smectite grou ...
, have properties that make them plausible accelerators for the emergence of an RNA world: they grow by self-replication of their
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
line pattern; they are subject to an analogue of natural selection, as the clay "species" that grows fastest in a particular environment rapidly becomes dominant; and they can catalyze the formation of RNA molecules. Although this idea has not become the scientific consensus, it still has active supporters. Research in 2003 reported that
montmorillonite Montmorillonite is a very soft phyllosilicate group of minerals that form when they precipitate from water solution as microscopic crystals, known as clay. It is named after Montmorillon in France. Montmorillonite, a member of the smectite grou ...
could also accelerate the conversion of
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s into "bubbles" and that the "bubbles" could encapsulate RNA attached to the clay. These "bubbles" can then grow by absorbing additional lipids and then divide. The formation of the earliest cells may have been aided by similar processes. A similar hypothesis presents self-replicating iron-rich clays as the progenitors of
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s, lipids and
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s.


Metabolism first: Iron–sulfur world

A series of experiments starting in 1997 showed that early stages in the formation of proteins from inorganic materials including
carbon monoxide Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
and
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
could be achieved by using iron sulfide and
nickel sulfide Nickel sulfide is any inorganic compound with the formula NixSy. These compounds range in color from bronze (Ni3S2) to black (NiS2). The nickel sulfide with simplest stoichiometry is NiS, also known as the mineral millerite. From the economic ...
as catalysts. Most of the steps required temperatures of about and moderate pressures, although one stage required and a pressure equivalent to that found under of rock. Hence it was suggested that self-sustaining synthesis of proteins could have occurred near hydrothermal vents.


Metabolism first: Pre–cells (successive cellularisation)

In this scenario, the biochemical evolution of life led to diversification through the development of a multiphenotypical population of pre-cells, i.e. evolving entities of primordial life with different characteristics and widespread
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the e ...
. From this pre-cell population the founder groups A, B, C and then, from them, the precursor cells (here named proto-cells) of the three domains of life arose successively, leading first to the domain Bacteria, then to the domain Archea and finally to the domain Eucarya. For the development of cells ( cellularisation), the pre-cells had to be protected from their surroundings by envelopes (i.e. membranes, walls). For instance, the development of rigid
cell wall A cell wall is a structural layer that surrounds some Cell type, cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, ...
s by the invention of
peptidoglycan Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating ...
in bacteria (domain Bacteria) may have been a prerequisite for their successful survival, radiation and colonisation of virtually all habitats of the geosphere and hydrosphere. This scenario may explain the quasi-random distribution of evolutionarily important features among the three domains and, at the same time, the existence of the most basic biochemical features (genetic code, set of protein amino acids etc.) in all three domains (unity of life), as well as the close relationship between the Archaea and the Eucarya. A scheme of the pre-cell scenario is shown in the adjacent figure, where important evolutionary improvements are indicated by numbers.


Prebiotic environments


Geothermal springs

Wet-dry cycles at geothermal springs are shown to solve the problem of hydrolysis and promote the polymerization and vesicle encapsulation of biopolymers. The temperatures of geothermal springs are suitable for biomolecules. Silica minerals and metal sulfides in these environments have photocatalytic properties to catalyze biomolecules. Solar UV exposure also promotes the synthesis of biomolecules like RNA nucleotides. An analysis of hydrothermal veins at a 3.5 Gya (giga years ago or 1 billion years) geothermal spring setting were found to have elements required for the origin of life, which are potassium, boron, hydrogen, sulfur, phosphorus, zinc, nitrogen, and oxygen. Mulkidjanian and colleagues find that such environments have identical ionic concentrations to the cytoplasm of modern cells. Fatty acids in acidic or slightly alkaline geothermal springs assemble into vesicles after wet-dry cycles as there is a lower concentration of ionic solutes at geothermal springs since they are freshwater environments, in contrast to seawater which has a higher concentration of ionic solutes. For organic compounds to be present at geothermal springs, they would have likely been transported by carbonaceous meteors. The molecules that fell from the meteors were then accumulated in geothermal springs. Geothermal springs can accumulate aqueous phosphate in the form of phopshoric acid. Based on lab-run models, these concentrations of phoshate are insufficient to facilitate
biosynthesis Biosynthesis, i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme-Catalysis, catalyzed processes where chemical substances absorbed as nutrients (or previously converted through biosynthe ...
. As for the evolutionary implications, freshwater heterotrophic cells that depended upon synthesized organic compounds later evolved photosynthesis because of the continuous exposure to sunlight as well as their cell walls with ion pumps to maintain their intracellular metabolism after they entered the oceans.


Deep sea hydrothermal vents

Catalytic mineral particles and transition metal sulfides at these environments are capable of catalyzing organic compounds. Scientists simulated laboratory conditions that were identical to white smokers and successfully oligomerized RNA, measured to be 4 units long. Long chain fatty acids can be synthesized via Fischer-Tropsch synthesis. Another experiment that replicated conditions also similar white smokers, with long chain fatty acids present resulted in the assembly of vesicles. Exergonic reactions at hydrothermal vents are suggested to have been a source of free energy that promoted chemical reactions, synthesis of organic molecules, and are inducive to chemical gradients. In small rock pore systems, membranous structures between alkaline seawater and the acidic ocean would be conducive to natural proton gradients. Nucleobase synthesis could occur by following universally conserved biochemical pathways by using metal ions as catalysts. RNA molecules of 22 bases can be polymerized in alkaline hydrothermal vent pores. Thin pores are shown to only accumulate long polynucleotides whereas thick pores accumulate both short and long polynucleotides. Small mineral cavities or mineral gels could have been a compartment for abiogenic processes. A genomic analysis supports this hypothesis as they found 355 genes that likely traced to LUCA upon 6.1 million sequenced prokaryotic genes. They reconstruct LUCA as a thermophilic anaerobe with a Wood-Ljungdahl pathway, implying an origin of life at white smokers. LUCA would also have exhibited other biochemical pathways such as
gluconeogenesis Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In verte ...
, reverse incomplete Krebs cycle, glycolysis, and the pentose phosphate pathway, including biochemical reactions such as reductive amination and
transamination Transamination is a chemical reaction that transfers an amino group to a ketoacid to form new amino acids.This pathway is responsible for the deamination of most amino acids. This is one of the major degradation pathways which convert essential a ...
.


= Life "seeded" from elsewhere

= The Panspermia hypothesis does not explain how life arose originally, but simply examines the possibility of its coming from somewhere other than Earth. The idea that life on Earth was "seeded" from elsewhere in the Universe dates back at least to the Greek philosopher
Anaximander Anaximander ( ; ''Anaximandros''; ) was a Pre-Socratic philosophy, pre-Socratic Ancient Greek philosophy, Greek philosopher who lived in Miletus,"Anaximander" in ''Chambers's Encyclopædia''. London: George Newnes Ltd, George Newnes, 1961, Vol. ...
in the sixth century BCE. In the twentieth century it was proposed by the physical chemist
Svante Arrhenius Svante August Arrhenius ( , ; 19 February 1859 – 2 October 1927) was a Swedish scientist. Originally a physicist, but often referred to as a chemist, Arrhenius was one of the founders of the science of physical chemistry. In 1903, he received ...
, by the
astronomer An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, natural satellite, moons, comets and galaxy, galax ...
s
Fred Hoyle Sir Fred Hoyle (24 June 1915 – 20 August 2001) was an English astronomer who formulated the theory of stellar nucleosynthesis and was one of the authors of the influential B2FH paper, B2FH paper. He also held controversial stances on oth ...
and Chandra Wickramasinghe, and by
molecular biologist Molecular biology is a branch of biology that seeks to understand the molecule, molecular basis of biological activity in and between Cell (biology), cells, including biomolecule, biomolecular synthesis, modification, mechanisms, and interactio ...
Francis Crick and chemist Leslie Orgel. There are three main versions of the "seeded from elsewhere" hypothesis: from elsewhere in our Solar System via fragments knocked into space by a large
meteor A meteor, known colloquially as a shooting star, is a glowing streak of a small body (usually meteoroid) going through Earth's atmosphere, after being heated to incandescence by collisions with air molecules in the upper atmosphere, creating a ...
impact, in which case the most credible sources are
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
and
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
; by alien visitors, possibly as a result of accidental
contamination Contamination is the presence of a constituent, impurity, or some other undesirable element that renders something unsuitable, unfit or harmful for the physical body, natural environment, workplace, etc. Types of contamination Within the scien ...
by microorganisms that they brought with them; and from outside the Solar System but by natural means. Experiments in low Earth orbit, such as EXOSTACK, have demonstrated that some microorganism
spore In biology, a spore is a unit of sexual reproduction, sexual (in fungi) or asexual reproduction that may be adapted for biological dispersal, dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores fo ...
s can survive the shock of being catapulted into space and some can survive exposure to outer space radiation for at least 5.7 years. Meteorite ALH84001, which was once part of the Martian crust, shows evidence of carbonate-globules with texture and size indicative of terrestrial bacterial activity. Scientists are divided over the likelihood of life arising independently on Mars, or on other planets in our
galaxy A galaxy is a Physical system, system of stars, stellar remnants, interstellar medium, interstellar gas, cosmic dust, dust, and dark matter bound together by gravity. The word is derived from the Ancient Greek, Greek ' (), literally 'milky', ...
.


= Carbonate-rich lakes

= One theory traces the origins of life to the abundant carbonate-rich lakes which would have dotted the early Earth.
Phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
would have been an essential cornerstone to the origin of life since it is a critical component of
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s,
phospholipid Phospholipids are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s, and
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
. Phosphate is often depleted in natural environments due to its uptake by microbes and its affinity for
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
ions. In a process called '
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of Hydroxide, OH−, Fluoride, F− and Chloride, Cl− ion, respectively, in the crystal. The formula of the admixture of ...
precipitation', free phosphate ions react with the calcium ions abundant in water to precipitate out of solution as apatite minerals. When attempting to simulate prebiotic
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
, scientists have only found success when using phosphorus levels far above modern day natural concentrations. This problem of low phosphate is solved in
carbonate A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group ...
-rich environments. When in the presence of carbonate, calcium readily reacts to form
calcium carbonate Calcium carbonate is a chemical compound with the chemical formula . It is a common substance found in Rock (geology), rocks as the minerals calcite and aragonite, most notably in chalk and limestone, eggshells, gastropod shells, shellfish skel ...
instead of apatite minerals. With the free calcium ions removed from solution, phosphate ions are no longer precipitated from solution. This is specifically seen in lakes with no inflow, since no new calcium is introduced into the water body. After all of the calcium is sequestered into calcium carbonate (
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
), phosphate concentrations are able to increase to levels necessary for facilitating
biomolecule A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids ...
creation. Though carbonate-rich lakes have
alkaline In chemistry, an alkali (; from the Arabic word , ) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The ...
chemistry in modern times, models suggest that carbonate lakes had a pH low enough for prebiotic synthesis when placed in the acidifying context of Earth's early carbon dioxide rich atmosphere. Rainwater rich in carbonic acid weathered the rock on the surface of the Earth at rates far greater than today. With high phosphate influx, no phosphate precipitation, and no microbial usage of phosphate at this time, models show phosphate reached concentrations approximately 100 times greater than they are today. Modeled pH and phosphate levels of early Earth carbonate-rich lakes nearly match the conditions used in current laboratory experiments on the origin of life. Similar to the process predicted by geothermalbr>hot spring hypotheses
changing lake levels and wave action deposited phosphorus-rich brine onto dry shore and marginal pools. This drying of the solution promotes
polymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many fo ...
reactions and removes enough water to promote phosphorylation, a process integral to biological energy storage and transfer. When washed away by further precipitation and wave action, researchers concluded these newly formed biomolecules may have washed back into the lake - allowing the first prebiotic syntheses on Earth to occur.


Environmental and evolutionary impact of microbial mats

Microbial mats are multi-layered, multi-species colonies of bacteria and other organisms that are generally only a few millimeters thick, but still contain a wide range of chemical environments, each of which favors a different set of microorganisms. To some extent each mat forms its own
food chain A food chain is a linear network of links in a food web, often starting with an autotroph (such as grass or algae), also called a producer, and typically ending at an apex predator (such as grizzly bears or killer whales), detritivore (such as ...
, as the by-products of each group of microorganisms generally serve as "food" for adjacent groups.
Stromatolite Stromatolites ( ) or stromatoliths () are layered Sedimentary rock, sedimentary formation of rocks, formations (microbialite) that are created mainly by Photosynthesis, photosynthetic microorganisms such as cyanobacteria, sulfate-reducing micr ...
s are stubby pillars built as microorganisms in mats slowly migrate upwards to avoid being smothered by sediment deposited on them by water. There has been vigorous debate about the validity of alleged stromatolite fossils from before 3 Ga, with critics arguing that they could have been formed by non-biological processes. In 2006, another find of stromatolites was reported from the same part of Australia, in rocks dated to 3.5 Ga. In modern underwater mats the top layer often consists of photosynthesizing
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
which create an oxygen-rich environment, while the bottom layer is oxygen-free and often dominated by hydrogen sulfide emitted by the organisms living there. Oxygen is toxic to organisms that are not adapted to it, but greatly increases the
metabolic Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the ...
efficiency of oxygen-adapted organisms;
oxygenic photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metaboli ...
by bacteria in mats increased biological productivity by a factor of between 100 and 1,000. The source of hydrogen atoms used by oxygenic photosynthesis is water, which is much more plentiful than the geologically produced reducing agents required by the earlier non-oxygenic photosynthesis. From this point onwards life itself produced significantly more of the resources it needed than did geochemical processes. Oxygen became a significant component of Earth's atmosphere about 2.4 Ga. Although eukaryotes may have been present much earlier, the oxygenation of the atmosphere was a prerequisite for the evolution of the most complex eukaryotic cells, from which all multicellular organisms are built. The boundary between oxygen-rich and oxygen-free layers in microbial mats would have moved upwards when photosynthesis shut down overnight, and then downwards as it resumed on the next day. This would have created selection pressure for organisms in this intermediate zone to acquire the ability to tolerate and then to use oxygen, possibly via
endosymbiosis An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualism (biology), mutualistic relationship. Examples are nitrogen-fixing bacteria (called rhizobia), whi ...
, where one organism lives inside another and both of them benefit from their association. Cyanobacteria have the most complete biochemical "toolkits" of all the mat-forming organisms. Hence they are the most self-sufficient, well-adapted to strike out on their own both as floating mats and as the first of the phytoplankton, provide the basis of most marine food chains.


Diversification of eukaryotes


Chromatin, nucleus, endomembrane system, and mitochondria

Eukaryotes may have been present long before the oxygenation of the atmosphere, but most modern eukaryotes require oxygen, which is used by their
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
to fuel the production of ATP, the internal energy supply of all known cells. In the 1970s, a vigorous debate concluded that eukaryotes emerged as a result of a sequence of endosymbiosis between
prokaryote A prokaryote (; less commonly spelled procaryote) is a unicellular organism, single-celled organism whose cell (biology), cell lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Ancient Gree ...
s. For example: a
predator Predation is a biological interaction in which one organism, the predator, kills and eats another organism, its prey. It is one of a family of common List of feeding behaviours, feeding behaviours that includes parasitism and micropredation ...
y microorganism invaded a large prokaryote, probably an
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
n, but instead of killing its prey, the attacker took up residence and evolved into mitochondria; one of these chimeras later tried to swallow a photosynthesizing cyanobacterium, but the victim survived inside the attacker and the new combination became the ancestor of
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s; and so on. After each endosymbiosis, the partners eventually eliminated unproductive duplication of genetic functions by re-arranging their genomes, a process which sometimes involved transfer of genes between them. Another hypothesis proposes that mitochondria were originally
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
- or
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
-metabolising endosymbionts, and became oxygen-consumers later. On the other hand, mitochondria might have been part of eukaryotes' original equipment. There is a debate about when eukaryotes first appeared: the presence of steranes in Australian
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of Clay mineral, clay minerals (hydrous aluminium phyllosilicates, e.g., Kaolinite, kaolin, aluminium, Al2Silicon, Si2Oxygen, O5(hydroxide, OH)4) and tiny f ...
s may indicate eukaryotes at 2.7 Ga; however, an analysis in 2008 concluded that these chemicals infiltrated the rocks less than 2.2 Ga and prove nothing about the origins of eukaryotes. Fossils of the
algae Algae ( , ; : alga ) is an informal term for any organisms of a large and diverse group of photosynthesis, photosynthetic organisms that are not plants, and includes species from multiple distinct clades. Such organisms range from unicellular ...
'' Grypania'' have been reported in 1.85 billion-year-old rocks (originally dated to 2.1 Ga but later revised), indicating that eukaryotes with organelles had already evolved. A diverse collection of fossil algae were found in rocks dated between 1.5 and 1.4 Ga. The earliest known fossils of
fungi A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
date from 1.43 Ga.


Plastids

Plastids, the superclass of
organelle In cell biology, an organelle is a specialized subunit, usually within a cell (biology), cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as Organ (anatomy), organs are to th ...
s of which
chloroplast A chloroplast () is a type of membrane-bound organelle, organelle known as a plastid that conducts photosynthesis mostly in plant cell, plant and algae, algal cells. Chloroplasts have a high concentration of chlorophyll pigments which captur ...
s are the best-known exemplar, are thought to have originated from endosymbiotic cyanobacteria. The symbiosis evolved around 1.5 Ga and enabled eukaryotes to carry out
oxygenic photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metaboli ...
. Three evolutionary lineages of photosynthetic plastids have since emerged: chloroplasts in
green algae The green algae (: green alga) are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/ Streptophyta. The land plants ...
and plants, rhodoplasts in
red algae Red algae, or Rhodophyta (, ; ), make up one of the oldest groups of eukaryotic algae. The Rhodophyta comprises one of the largest Phylum, phyla of algae, containing over 7,000 recognized species within over 900 Genus, genera amidst ongoing taxon ...
and cyanelles in the glaucophytes. Not long after this primary endosymbiosis of plastids, rhodoplasts and chloroplasts were passed down to other bikonts, establishing a eukaryotic assemblage of phytoplankton by the end of the
Neoproterozoic The Neoproterozoic Era is the last of the three geologic eras of the Proterozoic geologic eon, eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era an ...
Eon.


Sexual reproduction and multicellular organisms


Evolution of sexual reproduction

The defining characteristics of
sexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote tha ...
in eukaryotes are meiosis and
fertilization Fertilisation or fertilization (see American and British English spelling differences#-ise, -ize (-isation, -ization), spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give ...
, resulting in
genetic recombination Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryot ...
, giving offspring 50% of their genes from each parent. By contrast, in
asexual reproduction Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the f ...
there is no recombination, but occasional
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the e ...
. Bacteria also exchange DNA by bacterial conjugation, enabling the spread of resistance to
antibiotic An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting pathogenic bacteria, bacterial infections, and antibiotic medications are widely used in the therapy ...
s and other
toxin A toxin is a naturally occurring poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919), derived ...
s, and the ability to utilize new
metabolite In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, c ...
s. However, conjugation is not a means of reproduction, and is not limited to members of the same species – there are cases where bacteria transfer DNA to plants and animals. On the other hand, bacterial transformation is clearly an adaptation for transfer of DNA between bacteria of the same species. This is a complex process involving the products of numerous bacterial genes and can be regarded as a bacterial form of sex. This process occurs naturally in at least 67 prokaryotic species (in seven different phyla). Sexual reproduction in eukaryotes may have evolved from bacterial transformation. The disadvantages of sexual reproduction are well-known: the genetic reshuffle of recombination may break up favorable combinations of genes; and since males do not directly increase the number of offspring in the next generation, an asexual population can out-breed and displace in as little as 50 generations a sexual population that is equal in every other respect. Nevertheless, the great majority of animals, plants, fungi and
protist A protist ( ) or protoctist is any eukaryotic organism that is not an animal, land plant, or fungus. Protists do not form a natural group, or clade, but are a paraphyletic grouping of all descendants of the last eukaryotic common ancest ...
s reproduce sexually. There is strong evidence that sexual reproduction arose early in the history of eukaryotes and that the genes controlling it have changed very little since then. How sexual reproduction evolved and survived is an unsolved puzzle. The Red Queen hypothesis suggests that sexual reproduction provides protection against
parasite Parasitism is a Symbiosis, close relationship between species, where one organism, the parasite, lives (at least some of the time) on or inside another organism, the Host (biology), host, causing it some harm, and is Adaptation, adapted str ...
s, because it is easier for parasites to evolve means of overcoming the defenses of genetically identical clones than those of sexual species that present moving targets, and there is some experimental evidence for this. However, there is still doubt about whether it would explain the survival of sexual species if multiple similar clone species were present, as one of the clones may survive the attacks of parasites for long enough to out-breed the sexual species. Furthermore, contrary to the expectations of the Red Queen hypothesis, Kathryn A. Hanley et al. found that the prevalence, abundance and mean intensity of mites was significantly higher in sexual geckos than in asexuals sharing the same habitat. In addition, biologist Matthew Parker, after reviewing numerous genetic studies on plant disease resistance, failed to find a single example consistent with the concept that pathogens are the primary selective agent responsible for sexual reproduction in the host. Alexey Kondrashov's ''deterministic mutation hypothesis'' (DMH) assumes that each organism has more than one harmful mutation and that the combined effects of these mutations are more harmful than the sum of the harm done by each individual mutation. If so, sexual recombination of genes will reduce the harm that bad mutations do to offspring and at the same time eliminate some bad mutations from the gene pool by isolating them in individuals that perish quickly because they have an above-average number of bad mutations. However, the evidence suggests that the DMH's assumptions are shaky because many species have on average less than one harmful mutation per individual and no species that has been investigated shows evidence of
synergy Synergy is an interaction or cooperation giving rise to a whole that is greater than the simple sum of its parts (i.e., a non-linear addition of force, energy, or effect). The term ''synergy'' comes from the Attic Greek word συνεργία ' f ...
between harmful mutations. The random nature of recombination causes the relative abundance of alternative traits to vary from one generation to another. This
genetic drift Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, is the change in the Allele frequency, frequency of an existing gene variant (allele) in a population due to random chance. Genetic drift may cause gene va ...
is insufficient on its own to make sexual reproduction advantageous, but a combination of genetic drift and natural selection may be sufficient. When chance produces combinations of good traits, natural selection gives a large advantage to lineages in which these traits become genetically linked. On the other hand, the benefits of good traits are neutralized if they appear along with bad traits. Sexual recombination gives good traits the opportunities to become linked with other good traits, and mathematical models suggest this may be more than enough to offset the disadvantages of sexual reproduction. Other combinations of hypotheses that are inadequate on their own are also being examined. The adaptive function of sex remains a major unresolved issue in biology. The competing models to explain it were reviewed by John A. Birdsell and Christopher Wills. The hypotheses discussed above all depend on the possible beneficial effects of random genetic variation produced by genetic recombination. An alternative view is that sex arose and is maintained as a process for repairing DNA damage, and that the genetic variation produced is an occasionally beneficial byproduct.


Multicellularity

The simplest definitions of "multicellular", for example "having multiple cells", could include colonial cyanobacteria like '' Nostoc''. Even a technical definition such as "having the same genome but different types of cell" would still include some
genera Genus (; : genera ) is a taxonomic rank above species and below family as used in the biological classification of living and fossil organisms as well as viruses. In binomial nomenclature, the genus name forms the first part of the binomial s ...
of the green algae Volvox, which have cells that specialize in reproduction. Multicellularity evolved independently in organisms as diverse as sponges and other animals, fungi, plants,
brown algae Brown algae (: alga) are a large group of multicellular algae comprising the class (biology), class Phaeophyceae. They include many seaweeds located in colder waters of the Northern Hemisphere. Brown algae are the major seaweeds of the temperate ...
, cyanobacteria, slime molds and myxobacteria. For the sake of brevity, this article focuses on the organisms that show the greatest specialization of cells and variety of cell types, although this approach to the evolution of biological complexity could be regarded as "rather anthropocentric". The initial advantages of multicellularity may have included: more efficient sharing of nutrients that are digested outside the cell, increased resistance to predators, many of which attacked by engulfing; the ability to resist currents by attaching to a firm surface; the ability to reach upwards to filter-feed or to obtain sunlight for photosynthesis; the ability to create an internal environment that gives protection against the external one; and even the opportunity for a group of cells to behave "intelligently" by sharing information. These features would also have provided opportunities for other organisms to diversify, by creating more varied environments than flat microbial mats could. Multicellularity with differentiated cells is beneficial to the organism as a whole but disadvantageous from the point of view of individual cells, most of which lose the opportunity to reproduce themselves. In an asexual multicellular organism, rogue cells which retain the ability to reproduce may take over and reduce the organism to a mass of undifferentiated cells. Sexual reproduction eliminates such rogue cells from the next generation and therefore appears to be a prerequisite for complex multicellularity. The available evidence indicates that eukaryotes evolved much earlier but remained inconspicuous until a rapid diversification around 1 Ga. The only respect in which eukaryotes clearly surpass bacteria and archaea is their capacity for variety of forms, and sexual reproduction enabled eukaryotes to exploit that advantage by producing organisms with multiple cells that differed in form and function. By comparing the composition of transcription factor families and regulatory network motifs between unicellular organisms and multicellular organisms, scientists found there are many novel transcription factor families and three novel types of regulatory network motifs in multicellular organisms, and novel family transcription factors are preferentially wired into these novel network motifs which are essential for multicullular development. These results propose a plausible mechanism for the contribution of novel-family transcription factors and novel network motifs to the origin of multicellular organisms at transcriptional regulatory level.


Fossil evidence

Fungi-like fossils were found in vesicular basalt dating back to the Paleoproterozoic Era around 2.4 billion years ago. The controversial Francevillian biota fossils, dated to 2.1 Ga, are the earliest known fossil organisms that are clearly multicellular, if they are indeed fossils. They may have had differentiated cells. Another early multicellular fossil, ''Qingshania'', dated to 1.7 Ga, appears to consist of virtually identical cells. The red algae called ''Bangiomorpha'', dated at 1.2 Ga, is the earliest known organism that certainly has differentiated, specialized cells, and is also the oldest known sexually reproducing organism. The 1.43 billion-year-old fossils interpreted as fungi appear to have been multicellular with differentiated cells. The "string of beads" organism ''Horodyskia'', found in rocks dated from 1.5 Ga to 900 Ma, may have been an early metazoan; however, it has also been interpreted as a colonial foraminiferan.


Emergence of animals

The animal family tree
Animals are multicellular eukaryotes,Myxozoa were thought to be an exception, but are now thought to be heavily modified members of the Cnidaria. and are distinguished from plants, algae, and fungi by lacking
cell wall A cell wall is a structural layer that surrounds some Cell type, cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, ...
s. All animals are motile, if only at certain life stages. All animals except sponges have bodies differentiated into separate Tissue (biology), tissues, including muscles, which move parts of the animal by contracting, and nervous system, nerve tissue, which transmits and processes signals. In November 2019, researchers reported the discovery of ''Caveasphaera'', a
multicellular organism A multicellular organism is an organism that consists of more than one cell (biology), cell, unlike unicellular organisms. All species of animals, Embryophyte, land plants and most fungi are multicellular, as are many algae, whereas a few organism ...
found in 609-million-year-old rocks, that is not easily defined as an animal or non-animal, which may be related to one of the earliest instances of animal evolution. Fossil studies of ''Caveasphaera'' have suggested that animal-like embryonic development arose much earlier than the oldest clearly defined animal fossils. and may be consistent with studies suggesting that animal evolution may have begun about 750 million years ago. Nonetheless, the earliest widely accepted animal fossils are the rather modern-looking cnidarians (the group that includes jellyfish, sea anemones and ''Hydra (genus), Hydra''), possibly from around , although fossils from the Doushantuo Formation can only be dated approximately. Their presence implies that the cnidarian and bilaterian lineages had already diverged. The Ediacara biota, which flourished for the last 40 million years before the start of the Cambrian, were the first animals more than a very few centimetres long. Many were flat and had a "quilted" appearance, and seemed so strange that there was a proposal to classify them as a separate Kingdom (biology), kingdom, Vendozoa. Others, however, have been interpreted as early molluscs (''Kimberella''), echinoderms (''Arkarua''), and arthropods (''Spriggina'', ''Parvancorina''). There is still debate about the classification of these specimens, mainly because the diagnostic features which allow taxonomists to classify more recent organisms, such as similarities to living organisms, are generally absent in the Ediacarans. However, there seems little doubt that ''Kimberella'' was at least a triploblastic bilaterian animal, in other words, an animal significantly more complex than the cnidarians. The small shelly fauna are a very mixed collection of fossils found between the Late Ediacaran and Middle Cambrian periods. The earliest, ''Cloudina'', shows signs of successful defense against predation and may indicate the start of an evolutionary arms race. Some tiny Early Cambrian shells almost certainly belonged to molluscs, while the owners of some "armor plates", ''Halkieria'' and ''Microdictyon'', were eventually identified when more complete specimens were found in Cambrian lagerstätten that preserved soft-bodied animals. In the 1970s there was already a debate about whether the emergence of the modern phyla was "explosive" or gradual but hidden by the shortage of Precambrian animal fossils. A re-analysis of fossils from the Burgess Shale lagerstätte increased interest in the issue when it revealed animals, such as ''Opabinia'', which did not fit into any known phylum. At the time these were interpreted as evidence that the modern phyla had evolved very rapidly in the Cambrian explosion and that the Burgess Shale's "weird wonders" showed that the Early Cambrian was a uniquely experimental period of animal evolution. Later discoveries of similar animals and the development of new theoretical approaches led to the conclusion that many of the "weird wonders" were evolutionary "aunts" or "cousins" of modern groups—for example that ''Opabinia'' was a member of the lobopods, a group which includes the ancestors of the arthropods, and that it may have been closely related to the modern tardigrades. Nevertheless, there is still much debate about whether the Cambrian explosion was really explosive and, if so, how and why it happened and why it appears unique in the history of animals.


Deuterostomes and the first vertebrates

Most of the animals at the heart of the Cambrian explosion debate were protostomes, one of the two main groups of complex animals. The other major group, the deuterostomes, contains invertebrates such as starfish and sea urchins (echinoderms), as well as chordates (see below). Many echinoderms have hard
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
"shells", which are fairly common from the Early Cambrian small shelly fauna onwards. Other deuterostome groups are soft-bodied, and most of the significant Cambrian deuterostome fossils come from the Chengjiang fauna, a lagerstätte in China. The chordates are another major deuterostome group: animals with a distinct dorsal nerve cord. Chordates include soft-bodied invertebrates such as tunicates as well as vertebrates—animals with a backbone. While tunicate fossils predate the Cambrian explosion, the Chengjiang fossils ''Haikouichthys'' and ''Myllokunmingia'' appear to be true vertebrates, and ''Haikouichthys'' had distinct vertebrae, which may have been slightly biomineralization, mineralized. Vertebrates with jaws, such as the acanthodians, first appeared in the Late
Ordovician The Ordovician ( ) is a geologic period and System (geology), system, the second of six periods of the Paleozoic Era (geology), Era, and the second of twelve periods of the Phanerozoic Eon (geology), Eon. The Ordovician spans 41.6 million years f ...
.


Colonization of land

Adaptation to life on land is a major challenge: all land organisms need to avoid drying-out and all those above microscopic size must create special structures to withstand gravity; respiration (physiology), respiration and gas exchange systems have to change; reproductive systems cannot depend on water to carry eggs and sperm towards each other. Although the earliest good evidence of land plants and animals dates back to the Ordovician period (), and a number of microorganism lineages made it onto land much earlier, modern land ecosystems only appeared in the Late Devonian, about . In May 2017, evidence of the Earliest known life forms#Earliest life forms, earliest known life on land may have been found in 3.48-billion-year-old geyserite and other related mineral deposits (often found around hot springs and geysers) uncovered in the Pilbara craton, Pilbara Craton of
Western Australia Western Australia (WA) is the westernmost state of Australia. It is bounded by the Indian Ocean to the north and west, the Southern Ocean to the south, the Northern Territory to the north-east, and South Australia to the south-east. Western Aust ...
. In July 2018, scientists reported that the earliest life on land may have been
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
living on land 3.22 billion years ago. In May 2019, scientists reported the discovery of a fossilized fungus, named ''Ourasphaira giraldae'', in the Canadian Arctic, that may have grown on land a billion years ago, well before
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s were living on land. "A version of this article appears in print on May 28, 2019, Section D, Page 3 of the New York edition with the headline: Finding a Clue to Life's Arrival."


Evolution of terrestrial antioxidants

Oxygen began to accumulate in Earth's atmosphere over 3 Ga, as a by-product of
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
in cyanobacteria (blue-green algae). However, oxygen produces destructive chemical oxidation which was toxic to most previous organisms. Protective endogenous antioxidant enzymes and exogenous dietary antioxidants helped to prevent oxidative damage. For example, brown algae accumulate inorganic mineral antioxidants such as rubidium, vanadium, zinc, iron, copper, molybdenum, selenium and iodine, concentrated more than 30,000 times more than in seawater. Most marine mineral antioxidants act in the cells as essential trace elements in redox and antioxidant Metalloprotein, metalloenzymes. When plants and animals began to enter rivers and land about 500 Ma, environmental deficiency of these marine mineral antioxidants was a challenge to the evolution of terrestrial life. Terrestrial plants slowly optimized the production of new endogenous antioxidants such as ascorbic acid, polyphenols, flavonoids, tocopherols, etc. A few of these appeared more recently, in the last 200–50 Ma, in fruits and flowers of angiosperm plants. In fact, angiosperms (the dominant type of plant today) and most of their antioxidant pigments evolved during the Late Jurassic period. Plants employ antioxidants to defend their structures against reactive oxygen species produced during photosynthesis. Animals are exposed to the same oxidants, and they have evolved endogenous enzymatic antioxidant systems. Iodine in the form of the iodide ion I is the most primitive and abundant electron-rich essential element in the diet of marine and terrestrial organisms; it acts as an electron donor and has this ancestral antioxidant function in all iodide-concentrating cells, from primitive marine algae to terrestrial vertebrates.


Evolution of soil

Before the colonization of land there was no soil, a combination of mineral particles and decomposed organic matter. Land surfaces were either bare rock or shifting sand produced by weathering. Water and dissolved nutrients would have drained away very quickly. In the Sub-Cambrian peneplain in Sweden, for example, maximum depth of kaolinitization by
Neoproterozoic The Neoproterozoic Era is the last of the three geologic eras of the Proterozoic geologic eon, eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era an ...
weathering is about 5 m, while nearby kaolin deposits developed in the Mesozoic are Sub-Mesozoic hilly peneplains, much thicker. It has been argued that in the late Neoproterozoic sheet wash was a dominant process of erosion of surface material due to the Evolutionary history of plants, lack of plants on land. Films of cyanobacteria, which are not plants but use the same photosynthesis mechanisms, have been found in modern deserts in areas unsuitable for vascular plants. This suggests that microbial mats may have been the first organisms to colonize dry land, possibly in the Precambrian. Mat-forming cyanobacteria could have gradually evolved resistance to desiccation as they spread from the seas to intertidal zones and then to land.#Gee 2000, Shear 2000, "The Early Development of Terrestrial Ecosystems," pp
169–184
Lichens, which are symbiotic combinations of a fungus (almost always an ascomycete) and one or more photosynthesizers (green algae or cyanobacteria), are also important colonizers of lifeless environments, and their ability to break down rocks contributes to soil formation where plants cannot survive. The earliest known ascomycete fossils date from in the Silurian. Soil formation would have been very slow until the appearance of burrowing animals, which mix the mineral and organic components of soil and whose feces are a major source of organic components. Burrows have been found in Ordovician sediments, and are attributed to annelids (worms) or arthropods.


Plants and the Late Devonian wood crisis

In aquatic algae, almost all cells are capable of photosynthesis and are nearly independent. Life on land requires plants to become internally more complex and specialized: photosynthesis is most efficient at the top; roots extract water and nutrients from the ground; and the intermediate parts support and transport. Spores of land plants resembling liverworts have been found in Middle Ordovician rocks from . Wenlock (Silurian), Middle Silurian rocks from contain fossils of true plants, including clubmosses such as ''Baragwanathia''; most were under high, and some appear closely related to vascular plants, the group that includes trees. By the Late Devonian , abundant trees such as '' Archaeopteris'' bound the soil so firmly that they changed river systems from mostly braided river, braided to mostly meandering. This caused the "Late Devonian wood crisis" because: * They removed more carbon dioxide from the atmosphere, reducing the greenhouse effect and thus causing an ice age in the Carboniferous period. This did not repeat in later ecosystems, since the carbon dioxide "locked up" in wood was returned to the atmosphere by decomposition of dead wood, but the earliest fossil evidence of fungi that can decompose wood also comes from the Late Devonian. * The increasing depth of plants' roots led to more washing of nutrients into rivers and seas by rain. This caused algal blooms whose high consumption of oxygen caused
anoxic event An anoxic event describes a period wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic ( anoxic and sulfidic) waters. Although anoxic events have not happened for millions of years, the geol ...
s in deeper waters, increasing the extinction rate among deep-water animals.


Land invertebrates

Animals had to change their feeding and excretory systems, and most land animals developed internal fertilization of their eggs. The difference in refractive index between water and air required changes in their eyes. On the other hand, in some ways movement and breathing became easier, and the better transmission of high-frequency sounds in the air encouraged the development of hearing. The oldest animal with evidence of air-breathing, although not being the oldest myriapod fossil record, is ''Pneumodesmus'', an archipolypodan millipede from the Early Devonian, about . Its air-breathing, terrestrial nature is evidenced by the presence of Spiracle (arthropods), spiracles, the openings to Trachea#Invertebrates, tracheal systems. However, some earlier trace fossils from the Cambrian-Ordovician boundary about are interpreted as the tracks of large amphibian, amphibious arthropods on coastal sand dunes, and may have been made by euthycarcinoids, which are thought to be evolutionary "aunts" of myriapods. Other trace fossils from the Late Ordovician a little over probably represent land invertebrates, and there is clear evidence of numerous arthropods on coasts and alluvial plains shortly before the Silurian-Devonian boundary, about , including signs that some arthropods ate plants. Arthropods were well pre-adapted to colonise land, because their existing jointed exoskeletons provided protection against desiccation, support against gravity and a means of locomotion that was not dependent on water. The Fossil#Dating, fossil record of other major invertebrate groups on land is poor: none at all for non-parasitic flatworms, nematodes or nemerteans; some parasitic nematodes have been fossilized in amber; annelid worm fossils are known from the Carboniferous, but they may still have been aquatic animals; the earliest fossils of gastropods on land date from the Late Carboniferous, and this group may have had to wait until leaf litter became abundant enough to provide the moist conditions they need.#Briggs and Crowther 2001, Selden 2001, "Terrestrialization of Animals," pp. 71–74 The earliest confirmed fossils of flying insects date from the Late Carboniferous, but it is thought that insects developed the ability to fly in the Early Carboniferous or even Late Devonian. This gave them a wider range of ecological niches for feeding and breeding, and a means of escape from predators and from unfavorable changes in the environment. About 99% of modern insect species fly or are descendants of flying species.


Amphibians

Family tree of tetrapods
Tetrapods, vertebrates with four limbs, evolved from other rhipidistian fish over a relatively short timespan during the Late Devonian (). The early groups are grouped together as Labyrinthodontia. They retained aquatic, fry-like tadpoles, a system still seen in Lissamphibia, modern amphibians. Iodine and Triiodothyronine, T4/T3 stimulate the amphibian metamorphosis and the evolution of nervous systems transforming the aquatic, vegetarian tadpole into a "more evolved" terrestrial, carnivorous frog with better neurological, visuospatial, olfactory and cognitive abilities for hunting. The new hormonal action of T3 was made possible by the formation of T3-receptors in the cells of vertebrates. First, about 600–500 million years ago, the alpha T3-receptors with a metamorphosing action appeared in primitive chordates and then, about 250–150 million years ago, the beta T3-receptors with metabolic and thermogenetic actions appeared in birds and mammals. From the 1950s to the early 1980s it was thought that tetrapods evolved from fish that had already acquired the ability to crawl on land, possibly in order to go from a pool that was drying out to one that was deeper. However, in 1987, nearly complete fossils of ''Acanthostega'' from about showed that this Late Devonian Transitional fossil, transitional animal had legs and both lungs and gills, but could never have survived on land: its limbs and its wrist and ankle joints were too weak to bear its weight; its ribs were too short to prevent its lungs from being squeezed flat by its weight; its fish-like tail fin would have been damaged by dragging on the ground. The current hypothesis is that ''Acanthostega'', which was about long, was a wholly aquatic predator that hunted in shallow water. Its skeleton differed from that of most fish, in ways that enabled it to raise its head to breathe air while its body remained submerged, including: its jaws show modifications that would have enabled it to gulp air; the bones at the back of its skull are locked together, providing strong attachment points for muscles that raised its head; the head is not joined to the shoulder girdle and it has a distinct neck. The Devonian proliferation of land plants may help to explain why air breathing would have been an advantage: leaves falling into streams and rivers would have encouraged the growth of aquatic vegetation; this would have attracted grazing invertebrates and small fish that preyed on them; they would have been attractive prey but the environment was unsuitable for the big marine predatory fish; air-breathing would have been necessary because these waters would have been short of oxygen, since warm water holds less dissolved oxygen than cooler marine water and since the decomposition of vegetation would have used some of the oxygen. Later discoveries revealed earlier transitional forms between ''Acanthostega'' and completely fish-like animals. Unfortunately, there is then a gap (Romer's gap) of about 30 Ma between the fossils of ancestral tetrapods and Middle Carboniferous fossils of vertebrates that look well-adapted for life on land, during which only some fossils are found, which had five digits in the terminating point of the four limbs, showing true or crown tetrapods appeared in the gap around 350 Ma. Some of the fossils after this gap look as if the animals which they belonged to were early relatives of modern amphibians, all of which need to keep their skins moist and to lay their eggs in water, while others are accepted as early relatives of the amniotes, whose waterproof skin and egg membranes enable them to live and breed far from water. The Carboniferous Rainforest Collapse may have paved the way for amniotes to become dominant over amphibians.


Reptiles

Possible family tree of
dinosaur Dinosaurs are a diverse group of reptiles of the clade Dinosauria. They first appeared during the Triassic Geological period, period, between 243 and 233.23 million years ago (mya), although the exact origin and timing of the #Evolutio ...
s, birds and
mammal A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
s
Amniotes, whose eggs can survive in dry environments, probably evolved in the Late Carboniferous period (). The earliest fossils of the two surviving amniote groups, synapsids and sauropsids, date from around . The synapsid pelycosaurs and their descendants the therapsids are the most common land vertebrates in the best-known Permian (298.9 to 251.9 Ma) fossil beds. However, at the time these were all in temperate zones at middle latitudes, and there is evidence that hotter, drier environments nearer the Equator were dominated by sauropsids and amphibians. The
Permian–Triassic extinction event The Permian–Triassic extinction event (also known as the P–T extinction event, the Late Permian extinction event, the Latest Permian extinction event, the End-Permian extinction event, and colloquially as the Great Dying,) was an extinction ...
wiped out almost all land vertebrates, as well as the great majority of other life. During the slow recovery from this catastrophe, estimated to have taken 30 million years, a previously obscure sauropsid group became the most abundant and diverse terrestrial vertebrates: a few fossils of archosauriformes ("ruling lizard forms") have been found in Late Permian rocks, but, by the Middle Triassic, archosaurs were the dominant land vertebrates. Dinosaurs distinguished themselves from other archosaurs in the Late Triassic, and became the dominant land vertebrates of the Jurassic and Cretaceous periods ().


Birds

During the Late Jurassic, birds evolved from small, predatory theropod dinosaurs. The first birds inherited teeth and long, bony tails from their dinosaur ancestors, but some had developed horny, toothless beaks by the very Late Jurassic and short pygostyle tails by the Early Cretaceous.


Mammals

While the archosaurs and dinosaurs were becoming more dominant in the Triassic, the mammaliaform successors of the therapsids evolved into small, mainly nocturnal insectivores. This ecological role may have promoted the evolution of mammals, for example nocturnal life may have accelerated the development of endothermy ("warm-bloodedness") and hair or fur. By in the Early Jurassic there were animals that were very like today's mammals in a number of respects. Unfortunately, there is a gap in the fossil record throughout the Middle Jurassic. However, fossil teeth discovered in Madagascar indicate that the split between the lineage leading to monotremes and the one leading to other living mammals had occurred by . After dominating land vertebrate niches for about 150 Ma, the non-avian dinosaurs perished in the Cretaceous–Paleogene extinction event () along with many other groups of organisms. Mammals throughout the time of the dinosaurs had been restricted to a narrow range of taxa, sizes and shapes, but increased rapidly in size and diversity after the extinction, with bats taking to the air within 13 million years, and cetaceans to the sea within 15 million years.


Flowering plants

The first flowering plants appeared around 130 Ma. The 250,000 to 400,000 species of flowering plants outnumber all other ground plants combined, and are the dominant vegetation in most terrestrial ecosystems. There is fossil evidence that flowering plants diversified rapidly in the Early Cretaceous, from ,#Gee 2000, Crane, Friis and Pedersen 2000, "The Origin and Early Diversification of Angiosperms," pp
233–250
and that their rise was associated with that of pollinating insects. Among modern flowering plants ''Magnoliaceae, Magnolia'' are thought to be close to the common ancestor of the group. However, paleontologists have not succeeded in identifying the earliest stages in the evolution of flowering plants.


Social insects

The social insects are remarkable because the great majority of individuals in each colony are sterile. This appears contrary to basic concepts of evolution such as natural selection and the Gene-centered view of evolution, selfish gene. In fact, there are very few eusocial insect species: only 15 out of approximately 2,600 living family (biology), families of insects contain eusocial species, and it seems that eusociality has evolved independently only 12 times among arthropods, although some eusocial lineages have diversified into several families. Nevertheless, social insects have been spectacularly successful; for example although ants and termites account for only about 2% of known insect species, they form over 50% of the total mass of insects. Their ability to control a territory appears to be the foundation of their success. The sacrifice of breeding opportunities by most individuals has long been explained as a consequence of these species' unusual haplodiploid method of sex-determination system, sex determination, which has the paradoxical consequence that two sterile worker daughters of the same queen share more genes with each other than they would with their offspring if they could breed. However, E. O. Wilson and Bert Hölldobler argue that this explanation is faulty: for example, it is based on kin selection, but there is no evidence of nepotism in colonies that have multiple queens. Instead, they write, eusociality evolves only in species that are under strong pressure from predators and competitors, but in environments where it is possible to build "fortresses"; after colonies have established this security, they gain other advantages through co-operative foraging. In support of this explanation they cite the appearance of eusociality in Blesmol, bathyergid mole rats, which are not haplodiploid. The earliest fossils of insects have been found in Early Devonian rocks from about , which preserve only a few varieties of flightless insect. The Mazon Creek fossil beds, Mazon Creek lagerstätten from the Late Carboniferous, about , include about 200 species, some gigantic by modern standards, and indicate that insects had occupied their main modern ecological niches as herbivores, detritivores and insectivores. Social termites and ants first appeared in the Early Cretaceous, and advanced social bees have been found in Late Cretaceous rocks but did not become abundant until the Middle Cenozoic.


Humans

The idea that, along with other life forms, modern-day humans evolved from an ancient, common ancestor was proposed by Robert Chambers (journalist), Robert Chambers in 1844 and taken up by Charles Darwin in 1871. Modern humans evolved from a lineage of upright-walking apes that has been traced back over to ''Sahelanthropus''. The first known stone tools were made about , apparently by ''Australopithecus garhi'', and were found near animal bones that bear scratches made by these tools. The earliest hominines had chimpanzee-sized brains, but there has been a fourfold increase in the last 3 Ma; a statistical analysis suggests that hominine brain sizes depend almost completely on the date of the fossils, while the species to which they are assigned has only slight influence. There is a long-running debate about whether modern humans evolved Multiregional origin of modern humans, all over the world simultaneously from existing advanced hominines or are descendants of a Recent African origin of modern humans, single small population in Africa, which then migrated all over the world less than 200,000 years ago and replaced previous hominine species. There is also debate about whether anatomically modern humans had an intellectual, cultural and technological Behavioral modernity, "Great Leap Forward" under 40,000–50,000 years ago and, if so, whether this was due to neurological changes that are not visible in fossils.


Mass extinctions

Life on Earth has suffered occasional mass extinctions at least since . Although they were disasters at the time, mass extinctions have sometimes accelerated the evolution of life on Earth. When dominance of particular ecological niches passes from one group of organisms to another, it is rarely because the new dominant group is "superior" to the old and usually because an extinction event eliminates the old dominant group and makes way for the new one. The fossil record appears to show that the gaps between mass extinctions are becoming longer and that the average and background rates of extinction are decreasing. Both of these phenomena could be explained in one or more ways: * The oceans may have become more hospitable to life over the last 500 Ma and less vulnerable to mass extinctions: dissolved oxygen became more widespread and penetrated to greater depths; the development of life on land reduced the run-off of nutrients and hence the risk of eutrophication and anoxic events; and marine ecosystems became more diversified so that food chains were less likely to be disrupted. * Reasonably complete fossils are very rare, most extinct organisms are represented only by partial fossils, and complete fossils are rarest in the oldest rocks. So paleontologists have mistakenly assigned parts of the same organism to different genera, which were often defined solely to accommodate these finds—the story of ''Anomalocaris'' is an example of this. The risk of this mistake is higher for older fossils because these are often both unlike parts of any living organism and poorly conserved. Many of the "superfluous" genera are represented by fragments which are not found again and the "superfluous" genera appear to become extinct very quickly. Biodiversity in the fossil record, which is "...the number of distinct genera alive at any given time; that is, those whose first occurrence predates and whose last occurrence postdates that time" shows a different trend: a fairly swift rise from ; a slight decline from , in which the devastating Permian–Triassic extinction event is an important factor; and a swift rise from to the present.


See also

* History of evolutionary thought * ''On the Origin of Species'' * Phylogenetics * Speciation * Taxonomy of commonly fossilised invertebrates * ''Treatise on Invertebrate Paleontology'' * Viral evolution


Footnotes


References


Bibliography

* * * * * * * * * * * * * * * * * * "Proceedings from Nobel Symposium 70 held at Alfred Nobel's Björkborn Manor, Björkborn, Karlskoga, Sweden, August 29 – September 2, 1988" * * * * * * * "Preview booklet for 'Gondwana alive : biodiversity and the evolving terrestrial biosphere', book planned for September 2000, and associated projects." * * * * * * * * * * * *


Further reading

* * * *


External links

* * * General information on evolution compiled by Roger Perkins. * * * Tree of life diagram by Neal Olander. * * * Tutorial created by Dennis O'Neil. {{DEFAULTSORT:History Of Life Evolution-related timelines Paleontology Evolutionary biology Earth sciences Geochronology