HOME

TheInfoList



OR:

In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
s. They are important in many areas of
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, especially the theory of
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a con ...
and
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
. They are named for the
parity Parity may refer to: * Parity (computing) ** Parity bit in computing, sets the parity of data for the purpose of error detection ** Parity flag in computing, indicates if the number of set bits is odd or even in the binary representation of the r ...
of the powers of the power functions which satisfy each condition: the function f(x) = x^n is an even function if ''n'' is an even
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
, and it is an odd function if ''n'' is an odd integer.


Definition and examples

Evenness and oddness are generally considered for
real function In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an inter ...
s, that is real-valued functions of a real variable. However, the concepts may be more generally defined for functions whose
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function *Do ...
and
codomain In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either ...
both have a notion of
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
. This includes
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is com ...
s, all rings, all fields, and all
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
s. Thus, for example, a real function could be odd or even (or neither), as could a complex-valued function of a vector variable, and so on. The given examples are real functions, to illustrate the symmetry of their graphs.


Even functions

Let ''f'' be a real-valued function of a real variable. Then ''f'' is even if the following equation holds for all ''x'' such that ''x'' and −''x'' are in the domain of ''f'': or equivalently if the following equation holds for all such ''x'': :f(x) - f(-x) = 0. Geometrically, the graph of an even function is
symmetric Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
with respect to the ''y''-axis, meaning that its graph remains unchanged after reflection about the ''y''-axis. Examples of even functions are: *The absolute value x \mapsto , x, , *x \mapsto x^2, *x \mapsto x^4, * cosine \cos, * hyperbolic cosine \cosh.


Odd functions

Again, let ''f'' be a real-valued function of a real variable. Then ''f'' is odd if the following equation holds for all ''x'' such that ''x'' and −''x'' are in the domain of ''f'': or equivalently if the following equation holds for all such ''x'': :f(x) + f(-x) = 0. Geometrically, the graph of an odd function has rotational symmetry with respect to the
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
, meaning that its graph remains unchanged after
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
of 180
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathemati ...
s about the origin. Examples of odd functions are: *The identity function x \mapsto x, *x \mapsto x^3, *
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opp ...
\sin, * hyperbolic sine \sinh, *The
error function In mathematics, the error function (also called the Gauss error function), often denoted by , is a complex function of a complex variable defined as: :\operatorname z = \frac\int_0^z e^\,\mathrm dt. This integral is a special (non- elementa ...
\operatorname.


Basic properties


Uniqueness

* If a function is both even and odd, it is equal to 0 everywhere it is defined. * If a function is odd, the absolute value of that function is an even function.


Addition and subtraction

* The
sum Sum most commonly means the total of two or more numbers added together; see addition. Sum can also refer to: Mathematics * Sum (category theory), the generic concept of summation in mathematics * Sum, the result of summation, the additio ...
of two even functions is even. * The sum of two odd functions is odd. * The difference between two odd functions is odd. * The difference between two even functions is even. * The sum of an even and odd function is not even or odd, unless one of the functions is equal to zero over the given
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function *Do ...
.


Multiplication and division

* The product of two even functions is an even function. ** That implies that product of any number of even functions is an even function as well. * The product of two odd functions is an even function. * The product of an even function and an odd function is an odd function. * The
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
of two even functions is an even function. * The quotient of two odd functions is an even function. * The quotient of an even function and an odd function is an odd function.


Composition

* The composition of two even functions is even. * The composition of two odd functions is odd. * The composition of an even function and an odd function is even. * The composition of any function with an even function is even (but not vice versa).


Even–odd decomposition

Every function may be uniquely decomposed as the sum of an even and an odd function, which are called respectively the even part and the odd part of the function; if one defines and then f_\text is even, f_\text is odd, and : f(x)=f_\text(x) + f_\text(x). Conversely, if :f(x)=g(x)+h(x), where is even and is odd, then g=f_\text and h=f_\text, since : \begin 2f_\text(x) &=f(x)+f(-x)= g(x) + g(-x) +h(x) +h(-x) = 2g(x),\\ 2f_\text(x) &=f(x)-f(-x)= g(x) - g(-x) +h(x) -h(-x) = 2h(x). \end For example, the hyperbolic cosine and the hyperbolic sine may be regarded as the even and odd parts of the exponential function, as the first one is an even function, the second one is odd, and :e^x=\underbrace_ + \underbrace_.


Further algebraic properties

* Any linear combination of even functions is even, and the even functions form a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
over the reals. Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space over the reals. In fact, the vector space of ''all'' real functions is the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a mo ...
of the subspaces of even and odd functions. This is a more abstract way of expressing the property in the preceding section. **The space of functions can be considered a
graded algebra In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the ...
over the real numbers by this property, as well as some of those above. *The even functions form a
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Promi ...
over the reals. However, the odd functions do ''not'' form an algebra over the reals, as they are not closed under multiplication.


Analytic properties

A function's being odd or even does not imply differentiability, or even continuity. For example, the Dirichlet function is even, but is nowhere continuous. In the following, properties involving
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
s,
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
, <