Erbium(III) oxide is the
inorganic compound
An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bondsthat is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemistry''.
Inorgan ...
with the formula . It is a pink paramagnetic solid. It finds uses in various optical materials.
[
]
Structure
Erbium(III) oxide has a cubic
Cubic may refer to:
Science and mathematics
* Cube (algebra), "cubic" measurement
* Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex
** Cubic crystal system, a crystal system w ...
structure resembling the bixbyite motif. The Er3+ centers are octahedral.
Reactions
Erbium oxide is produced by burning erbium metal. Erbium oxide is insoluble in water but soluble in mineral acids. Er2O3 does not readily absorb moisture and carbon dioxide from the atmosphere. It can react with acids to form the corresponding erbium(III) salts. For example, with hydrochloric acid, the oxide follows the following idealized reaction leading to erbium chloride:
:
In practice, such simple acid-base reactions are accompanied by hydration:
:
Properties
One interesting property of erbium oxides is their ability to up convert photons. Photon upconversion
Photon upconversion (UC) is a process in which the sequential Absorption (electromagnetic radiation), absorption of two or more photons leads to the Emission spectrum, emission of light at shorter wavelength than the excitation wavelength. It is ...
takes place when infrared or visible radiation, low energy light, is converted to ultraviolet or violet radiation higher energy light via multiple transfer or absorption of energy. Erbium oxide nanoparticles also possess photoluminescence
Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. phot ...
properties. Erbium oxide nanoparticles can be formed by applying ultrasound (20 kHz, 29 W·cm−2) in the presence of multiwall carbon nanotubes. The erbium oxide nanoparticles that have been produced using ultrasound are erbium carboxioxide, hexagonal and spherical geometry erbium oxide. Each ultrasonically formed erbium oxide exhibits photoluminescence in the visible region of the electromagnetic spectrum under excitation of wavelength 379 nm in water. Hexagonal erbium oxide photoluminescence is long-lived and allows higher energy transitions (4S3/2 – 4I15/2). Spherical erbium oxide does not undergo 4S3/2 – 4I15/2 energy transitions.
Uses
The applications of Er2O3 are varied due to their electrical, optical and photoluminescence properties. Nanoscale materials doped with Er3+ are of much interest because they have special particle-size-dependent optical and electrical properties. Erbium oxide doped nanoparticle materials can be dispersed in glass or plastic for display purposes, such as display monitors. The spectroscopy of Er3+ electronic transitions in host crystals lattices of nanoparticles combined with ultrasonically formed geometries in aqueous solution of carbon nanotubes is of great interest for synthesis of photoluminescence nanoparticles in "green" chemistry.
Erbium oxide is widely used in interferometers that require high-power lasers. These interferometers often employ erbium-doped fiber amplifiers (EDFAs) to enhance the power of the laser beams. EDFAs, which utilize erbium ions, provide low noise and high gain, making them ideal for long-distance signal transmission and high-resolution measurements in interferometry.
Erbium oxide is among the most important rare earth metals used in biomedicine. The photoluminescence property of erbium oxide nanoparticles on carbon nanotubes makes them useful in biomedical applications. For example, erbium oxide nanoparticles can be surface modified for distribution into aqueous and non-aqueous media for bioimaging. Erbium oxides are also used as gate dielectric
In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
s in semiconductor
A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
devices since it has a high dielectric constant
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insul ...
(10–14) and a large band gap
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
. Erbium is sometimes used as a coloring for glass
Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
es, and erbium oxide can also be used as a burnable neutron poison
In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable ef ...
for nuclear fuel
Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy.
Oxide fuel
For fission reactors, the fuel (typically based on uranium) is ...
.
History
Impure erbium(III) oxide was isolated by Carl Gustaf Mosander in 1843, and first obtained in pure form in 1905 by Georges Urbain
Georges Urbain (12 April 1872 – 5 November 1938) was a French chemist, a professor of the Sorbonne, a member of the Institut de France, and director of the Institute of Chemistry in Paris. Much of his work focused on the rare earths, isolating ...
and Charles James.
References
{{Oxides
Erbium compounds
Sesquioxides
Crystals in space group 206