Engine efficiency of thermal
engine
An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.
Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power ge ...
s is the relationship between the total
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
contained in the
fuel
A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work (physics), work. The concept was originally applied solely to those materials capable of releasing chem ...
, and the amount of energy used to perform useful work. There are two classifications of thermal engines-
#
Internal combustion
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
(
gasoline
Gasoline ( North American English) or petrol ( Commonwealth English) is a petrochemical product characterized as a transparent, yellowish, and flammable liquid normally used as a fuel for spark-ignited internal combustion engines. When for ...
,
diesel and
gas turbine
A gas turbine or gas turbine engine is a type of Internal combustion engine#Continuous combustion, continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas gene ...
-
Brayton cycle
The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid.
It is characterized by isentropic process, isentropic compre ...
engines) and
#
External combustion engines
An external combustion engine (EC engine) is a reciprocating heat engine where a working fluid, contained internally, is heated by combustion in an external source, through the engine wall or a heat exchanger. The fluid then, by expanding an ...
(
steam piston,
steam turbine
A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work utilising a rotating output shaft. Its modern manifestation was invented by Sir Charles Par ...
, and the
Stirling cycle
The Stirling cycle is a thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an en ...
engine).
Each of these engines has
thermal efficiency
In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
For ...
characteristics that are unique to it.
Engine efficiency, transmission design, and tire design all contribute to a vehicle's
fuel efficiency
Fuel efficiency (or fuel economy) is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical energy, chemical potential energy contained in a carrier (fuel) into kinetic energy or Mechanical work, w ...
.
Mathematical definition
The efficiency of an engine is defined as ratio of the useful
work done
In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force stren ...
to the heat provided.
:
where,
is the heat absorbed and
is the work done.
Please note that the term work done relates to the power delivered at the clutch or at the driveshaft.
This means the friction and other losses are subtracted from the work done by thermodynamic expansion. Thus an engine not delivering any work to the outside environment has zero efficiency.
Compression ratio
The efficiency of internal combustion engines depends on several factors, the most important of which is the expansion ratio. For any
heat engine
A heat engine is a system that transfers thermal energy to do mechanical or electrical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, pa ...
the work which can be extracted from it is proportional to the difference between the starting pressure and the ending pressure during the expansion phase. Hence, increasing the starting pressure is an effective way to increase the work extracted (decreasing the ending pressure, as is done with steam turbines by exhausting into a vacuum, is likewise effective).
The compression ratio (calculated purely from the geometry of the mechanical parts) of a typical
gasoline (petrol) is 10:1 (
premium fuel) or 9:1 (regular fuel), with some engines reaching a ratio of 12:1 or more. The greater the expansion ratio, the more efficient the engine, in principle, and higher compression / expansion -ratio conventional engines in principle need gasoline with higher
octane
Octane is a hydrocarbon and also an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the location of branching in the carbon chain. One of these isomers ...
value, though this simplistic analysis is complicated by the difference between actual and geometric compression ratios. High octane value inhibits the fuel's tendency to burn nearly instantaneously (known as
''detonation'' or ''knock'') at high compression/high heat conditions. However, in engines that utilize compression rather than spark ignition, by means of very high compression ratios (14–25:1), such as the
diesel engine
The diesel engine, named after the German engineer Rudolf Diesel, is an internal combustion engine in which Combustion, ignition of diesel fuel is caused by the elevated temperature of the air in the cylinder due to Mechanics, mechanical Compr ...
or
Bourke engine
The Bourke engine was an attempt by Russell Bourke in the 1920s to improve the two-stroke internal combustion engine. Despite finishing his design and building several working engines, the onset of World War II, lack of test results, and the ...
, high octane fuel is not necessary. In fact, lower-octane fuels, typically rated by
cetane number, are preferable in these applications because they are more easily ignited under compression.
Under part throttle conditions (i.e. when the throttle is less than fully open), the ''effective'' compression ratio is less than when the engine is operating at full throttle, due to the simple fact that the incoming fuel-air mixture is being restricted and cannot fill the chamber to full atmospheric pressure. The engine efficiency is less than when the engine is operating at full throttle. One solution to this issue is to shift the load in a multi-cylinder engine from some of the cylinders (by deactivating them) to the remaining cylinders so that they may operate under higher individual loads and with correspondingly higher effective compression ratios. This technique is known as
variable displacement
Variable displacement is an automobile engine technology that allows the engine displacement to change, usually by deactivating cylinders, for improved fuel economy. The technology is primarily used in large multi-cylinder engines. Many automobile ...
.
Most petrol (gasoline,
Otto cycle
An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines.
The Otto cycle is a description of what happ ...
) and diesel (
Diesel cycle
The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected. This is in contrast to ig ...
) engines have an expansion ratio equal to the
compression ratio
The compression ratio is the ratio between the maximum and minimum volume during the compression stage of the power cycle in a piston or Wankel engine.
A fundamental specification for such engines, it can be measured in two different ways. Th ...
. Some engines, which use the
Atkinson cycle
The Atkinson-cycle engine is a type of internal combustion engine invented by James Atkinson (inventor), James Atkinson in 1882. The Atkinson cycle is designed to provide Energy conversion efficiency, efficiency at the expense of power density.
...
or the
Miller cycle achieve increased efficiency by having an expansion ratio larger than the compression ratio.
Diesel engines have a compression/expansion ratio between 14:1 and 25:1. In this case the general rule of higher efficiency from higher compression does not apply because diesels with compression ratios over 20:1 are
indirect injection diesels (as opposed to direct injection). These use a prechamber to make possible the high RPM operation required in automobiles/cars and light trucks. The thermal and gas dynamic losses from the prechamber result in direct injection diesels (despite their lower compression / expansion ratio) being more efficient.
Friction
An engine has many moving parts that produce
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
. Some of these friction forces remain constant (as long as the applied load is constant); some of these friction losses increase as engine speed increases, such as piston side forces and connecting bearing forces (due to increased inertia forces from the oscillating piston). A few friction forces decrease at higher speed, such as the friction force on the
cam
Cam or CAM may refer to:
Science and technology
* Cam (mechanism), a mechanical linkage which translates motion
* Camshaft, a shaft with a cam
* Camera or webcam, a device that records images or video
In computing
* Computer-aided manufacturin ...
's lobes used to operate the
inlet and outlet valves (the valves'
inertia
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newto ...
at high speed tends to pull the cam follower away from the cam lobe). Along with friction forces, an operating engine has ''pumping losses'', which is the work required to move air into and out of the cylinders. This pumping loss is minimal at low speed, but increases approximately as the square of the speed, until at rated power an engine is using about 20% of total power production to overcome friction and pumping losses.
Oxygen
Air
An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
is approximately 21%
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. If there is not enough oxygen for proper combustion, the fuel will not burn completely and will produce less energy. An excessively rich fuel to air ratio will increase unburnt hydrocarbon pollutants from the engine. If all of the oxygen is consumed because there is too much fuel, the engine's power is reduced.
As combustion temperature tends to increase with leaner fuel air mixtures, unburnt hydrocarbon pollutants must be balanced against higher levels of
pollutants
A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effect, or adversely affects the usefulness of a resource. These can be both naturally forming (i.e. minerals or extracted compounds like oi ...
such as nitrogen oxides (
NOx), which are created at higher combustion temperatures. This is sometimes mitigated by introducing fuel upstream of the combustion chamber to cool down the incoming air through evaporative cooling. This can increase the total charge entering the cylinder (as cooler air will be more dense), resulting in more power but also higher levels of hydrocarbon pollutants and lower levels of nitrogen oxide pollutants. With direct injection this effect is not as dramatic but it can cool down the combustion chamber enough to reduce certain pollutants such as nitrogen oxides (NOx), while raising others such as partially decomposed hydrocarbons.
The air-fuel mix is drawn into an engine because the downward motion of the pistons induces a partial vacuum. A
compressor
A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.
Many compressors can be staged, that is, the gas is compressed several times in steps o ...
can additionally be used to force a larger charge (forced induction) into the cylinder to produce more power. The compressor is either mechanically driven
supercharging or exhaust driven
turbocharging
In an internal combustion engine, a turbocharger (also known as a turbo or a turbosupercharger) is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake air, forcing more air into the ...
. Either way, forced induction increases the air pressure exterior to the cylinder inlet port.
There are other methods to increase the amount of oxygen available inside the engine; one of them, is to inject
nitrous oxide
Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or factitious air, among others, is a chemical compound, an Nitrogen oxide, oxide of nitrogen with the Chemical formula, formula . At room te ...
, (N
2O) to the mixture, and some engines use
nitromethane
Nitromethane, sometimes shortened to simply "nitro", is an organic compound with the chemical formula . It is the simplest organic nitro compound. It is a polar liquid commonly used as a solvent in a variety of industrial applications such as in ...
, a fuel that provides the oxygen itself it needs to burn. Because of that, the mixture could be 1 part of fuel and 3 parts of air; thus, it is possible to burn more fuel inside the engine, and get higher power outputs.
Internal combustion engines
Reciprocating engines
Reciprocating engines at idle have low thermal efficiency because the only usable work being drawn off the engine is from the generator.
At low speeds, gasoline engines suffer efficiency losses at small throttle openings from the high turbulence and frictional (head) loss when the incoming air must fight its way around the nearly closed throttle (pump loss); diesel engines do not suffer this loss because the incoming air is not throttled, but suffer "compression loss" due to use of the whole charge to compress the air to small amount of power output.
At high speeds, efficiency in both types of engine is reduced by pumping and mechanical frictional losses, and the shorter period within which combustion has to take place. High speeds also results in more drag.
Gasoline (petrol) engines
Modern
gasoline
Gasoline ( North American English) or petrol ( Commonwealth English) is a petrochemical product characterized as a transparent, yellowish, and flammable liquid normally used as a fuel for spark-ignited internal combustion engines. When for ...
engines have a maximum thermal efficiency of more than 50%, but most road legal cars only achieve about 20% to 40% efficiency. Many engines would be capable of running at higher thermal efficiency but at the cost of higher wear and emissions. In other words, even when the engine is operating at its point of maximum thermal efficiency, of the total heat energy released by the
gasoline
Gasoline ( North American English) or petrol ( Commonwealth English) is a petrochemical product characterized as a transparent, yellowish, and flammable liquid normally used as a fuel for spark-ignited internal combustion engines. When for ...
consumed, about 60-80% of total power is emitted as heat without being turned into useful work, i.e. turning the crankshaft.
Approximately half of this rejected heat is carried away by the exhaust gases, and half passes through the cylinder walls or
cylinder head
In a piston engine, the cylinder head sits above the cylinders, forming the roof of the combustion chamber. In sidevalve engines the head is a simple plate of metal containing the spark plugs and possibly heat dissipation fins. In more modern ...
into the engine cooling system, and is passed to the atmosphere via the cooling system radiator. Some of the work generated is also lost as friction, noise, air turbulence, and work used to turn engine equipment and appliances such as
water and oil pumps and the electrical
generator, leaving only about 20-40% of the energy released by the fuel consumed available to move the vehicle.
A gasoline engine burns a mix of gasoline and air, consisting of a range of about twelve to eighteen parts (by weight) of air to one part of fuel (by weight). A mixture with a 14.7:1 air/fuel ratio is
stoichiometric
Stoichiometry () is the relationships between the masses of reactants and products before, during, and following chemical reactions.
Stoichiometry is based on the law of conservation of mass; the total mass of reactants must equal the total m ...
, that is when burned, 100% of the
fuel
A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work (physics), work. The concept was originally applied solely to those materials capable of releasing chem ...
and the
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
are consumed. Mixtures with slightly less fuel, called
lean burn
Lean-burn refers to the burning of fuel with an excess of air in an internal combustion engine. In lean-burn engines the air–fuel ratio may be as lean as 65:1 (by mass). The air:fuel ratio needed to stoichiometry, stoichiometrically combust gas ...
are more efficient. The
combustion
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion ...
is a reaction which uses the
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
content of the air to combine with the fuel, which is a mixture of several
hydrocarbon
In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and Hydrophobe, hydrophobic; their odor is usually fain ...
s, resulting in
water vapor
Water vapor, water vapour, or aqueous vapor is the gaseous phase of Properties of water, water. It is one Phase (matter), state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from th ...
,
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
, and sometimes
carbon monoxide
Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
and partially burned hydrocarbons. In addition, at high temperatures the oxygen tends to combine with
nitrogen
Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
, forming
oxides of nitrogen (usually referred to as ''NOx'', since the number of oxygen atoms in the compound can vary, thus the "X" subscript). This mixture, along with the unused nitrogen and
other trace atmospheric elements, is what is found in the
exhaust
Exhaust, exhaustive, or exhaustion may refer to:
Law
* Exhaustion of intellectual property rights, limits to intellectual property rights in patent and copyright law
** Exhaustion doctrine, in patent law
** Exhaustion doctrine under U.S. law, i ...
.
The most efficient cycle is the Atkinson Cycle, but most gasoline engine makers use the Otto Cycle for higher power and torque. Some engine design, such as Mazda's Skyactiv-G and some hybrid engines designed by Toyota utilize the Atkinson and Otto cycles together with an electric motor/generator and a traction storage battery. The hybrid drivetrain can achieve effective efficiencies of close to 40%.
Diesel engines
Engines using the Diesel cycle are usually more efficient, although the Diesel cycle itself is less efficient at equal compression ratios. Since diesel engines use much higher compression ratios (the heat of compression is used to ignite the slow-burning
diesel fuel
Diesel fuel, also called diesel oil, heavy oil (historically) or simply diesel, is any liquid fuel specifically designed for use in a diesel engine, a type of internal combustion engine in which fuel ignition takes place without a spark as a re ...
), that higher ratio more than compensates for air pumping losses within the engine.
Modern turbo-diesel engines use electronically controlled common-rail
fuel injection
Fuel injection is the introduction of fuel in an internal combustion engine, most commonly automotive engines, by the means of a fuel injector. This article focuses on fuel injection in reciprocating piston and Wankel rotary engines.
All c ...
to increase efficiency. With the help of geometrically variable turbo-charging system (albeit more maintenance) this also increases the engines' torque at low engine speeds (1,200–1,800 rpm). Low speed diesel engines like the
MAN
A man is an adult male human. Before adulthood, a male child or adolescent is referred to as a boy.
Like most other male mammals, a man's genome usually inherits an X chromosome from the mother and a Y chromosome from the f ...
S80ME-C7 have achieved an overall
energy conversion efficiency
Energy conversion efficiency (''η'') is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radi ...
of 54.4%, which is the highest conversion of fuel into power by any single-cycle
internal
Internal may refer to:
*Internality as a concept in behavioural economics
*Neijia, internal styles of Chinese martial arts
*Neigong or "internal skills", a type of exercise in meditation associated with Daoism
* ''Internal'' (album) by Safia, 2016 ...
or
external combustion
An external combustion engine (EC engine) is a reciprocating heat engine where a working fluid, contained internally, is heated by combustion in an external source, through the engine wall or a heat exchanger. The fluid then, by expanding and ...
engine.
Engines in large diesel trucks, buses, and newer diesel cars can achieve peak efficiencies around 45%.
Gas turbine
The
gas turbine
A gas turbine or gas turbine engine is a type of Internal combustion engine#Continuous combustion, continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas gene ...
is most efficient at maximum power output in the same way reciprocating engines are most efficient at maximum load. The difference is that at lower rotational speed the pressure of the compressed air drops and thus thermal and
fuel efficiency
Fuel efficiency (or fuel economy) is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical energy, chemical potential energy contained in a carrier (fuel) into kinetic energy or Mechanical work, w ...
drop dramatically. Efficiency declines steadily with reduced power output and is very poor in the low power range.
General Motors
General Motors Company (GM) is an American Multinational corporation, multinational Automotive industry, automotive manufacturing company headquartered in Detroit, Michigan, United States. The company is most known for owning and manufacturing f ...
at one time manufactured a bus powered by a gas turbine, but due to rise of crude oil prices in the 1970s this concept was abandoned.
Rover
Rover may refer to:
People Name
* Constance Rover (1910–2005), English historian
* Jolanda de Rover (born 1963), Dutch swimmer
* Rover Thomas (c. 1920–1998), Indigenous Australian artist
Stage name
* Rover (musician), French singer-songw ...
,
Chrysler
FCA US, LLC, Trade name, doing business as Stellantis North America and known historically as Chrysler ( ), is one of the "Big Three (automobile manufacturers), Big Three" automobile manufacturers in the United States, headquartered in Auburn H ...
, and
Toyota
is a Japanese Multinational corporation, multinational Automotive industry, automotive manufacturer headquartered in Toyota City, Aichi, Japan. It was founded by Kiichiro Toyoda and incorporated on August 28, 1937. Toyota is the List of manuf ...
also built prototypes of turbine-powered cars. Chrysler built a short prototype series of them for real-world evaluation. Driving comfort was good, but overall economy lacked due to reasons mentioned above. This is also why gas turbines can be used for permanent and peak power electric plants. In this application they are only run at or close to full power, where they are efficient, or shut down when not needed.
Gas turbines do have an advantage in
power density
Power density, defined as the amount of power (the time rate of energy transfer) per unit volume, is a critical parameter used across a spectrum of scientific and engineering disciplines. This metric, typically denoted in watts per cubic meter ...
—gas turbines are used as the engines in heavy armored vehicles and armored tanks and in power generators in jet fighters.
One other factor negatively affecting the gas turbine efficiency is the ambient air temperature. With increasing temperature, intake air becomes less dense and therefore the gas turbine experiences power loss proportional to the increase in ambient air temperature.
Latest generation gas turbine engines have achieved an efficiency of 46% in
simple cycle and 61% when used in
combined cycle
A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turb ...
.
External combustion engines
Steam engine
::See also:
Steam engine#Efficiency
::See also:
Timeline of steam power
Piston engine
Steam engines and turbines operate on the
Rankine cycle
The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sour ...
which has a maximum
Carnot efficiency
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Nicolas Léonard Sadi Carnot, Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem (thermodynamics), Carnot's theorem, it provides ...
of 63% for practical engines, with steam turbine power plants able to achieve efficiency in the mid 40% range.
The efficiency of steam engines is primarily related to the steam temperature and pressure and the number of stages or ''expansions''.
Steam engine efficiency improved as the operating principles were discovered, which led to the development of the science of
thermodynamics
Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
. See grap
Steam Engine Efficiency
In earliest steam engines the boiler was considered part of the engine. Today they are considered separate, so it is necessary to know whether stated efficiency is overall, which includes the boiler, or just of the engine.
Comparisons of efficiency and power of the early steam engines is difficult for several reasons: 1) there was no standard weight for a bushel of coal, which could be anywhere from 82 to 96 pounds (37 to 44 kg). 2) There was no standard heating value for coal, and probably no way to measure heating value. The coals had much higher heating value than today's steam coals, with 13,500 BTU/pound (31 megajoules/kg) sometimes mentioned. 3) Efficiency was reported as "duty", meaning how many foot pounds (or newton-metres) of work lifting water were produced, but the mechanical pumping efficiency is not known.
The first piston steam engine, developed by
Thomas Newcomen
Thomas Newcomen (; February 1664 – 5 August 1729) was an English inventor, creator of the Newcomen atmospheric engine, atmospheric engine in 1712, Baptist lay preacher, preacher by calling and ironmonger by trade.
He was born in Dart ...
around 1710, was slightly over one half percent (0.5%) efficient. It operated with steam at near atmospheric pressure drawn into the cylinder by the load, then condensed by a spray of cold water into the steam filled cylinder, causing a partial vacuum in the cylinder and the pressure of the atmosphere to drive the piston down. Using the cylinder as the vessel in which to condense the steam also cooled the cylinder, so that some of the heat in the incoming steam on the next cycle was lost in warming the cylinder, reducing the thermal efficiency. Improvements made by
John Smeaton
John Smeaton (8 June 1724 – 28 October 1792) was an English civil engineer responsible for the design of bridges, canals, harbours and lighthouses. He was also a capable mechanical engineer and an eminent scholar, who introduced various ...
to the Newcomen engine increased the efficiency to over 1%.
James Watt
James Watt (; 30 January 1736 (19 January 1736 OS) – 25 August 1819) was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was f ...
made several improvements to the
Newcomen engine
The atmospheric engine was invented by Thomas Newcomen in 1712, and is sometimes referred to as the Newcomen fire engine (see below) or Newcomen engine. The engine was operated by condensing steam being drawn into the cylinder, thereby creating ...
, the most significant of which was the external condenser, which prevented the cooling water from cooling the cylinder. Watt's engine operated with steam at slightly above atmospheric pressure. Watt's improvements increased efficiency by a factor of over 2.5.
The lack of general mechanical ability, including skilled mechanics,
machine tool
A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, Boring (manufacturing), boring, grinding (abrasive cutting), grinding, shearing, or other forms of deformations. Machine tools employ some s ...
s, and manufacturing methods, limited the efficiency of actual engines and their design until about 1840.
Higher-pressured engines were developed by
Oliver Evans
Oliver Evans (September 13, 1755 – April 15, 1819) was an American inventor, engineer, and businessman born in rural Delaware and later rooted commercially in Philadelphia. He was one of the first Americans to build steam engines and an advo ...
and
Richard Trevithick
Richard Trevithick (13 April 1771 – 22 April 1833) was a British inventor and mining engineer. The son of a mining captain, and born in the mining heartland of Cornwall, Trevithick was immersed in mining and engineering from an early age. He ...
, working independently. These engines were not very efficient but had high
power-to-weight ratio
Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement ...
, allowing them to be used for powering locomotives and boats.
The
centrifugal governor
A centrifugal governor is a specific type of governor with a feedback system that controls the speed of an engine by regulating the flow of fuel or working fluid, so as to maintain a near-constant speed. It uses the principle of proportional con ...
, which had first been used by Watt to maintain a constant speed, worked by throttling the inlet steam, which lowered the pressure, resulting in a loss of efficiency on the high (above atmospheric) pressure engines. Later control methods reduced or eliminated this pressure loss.
The improved valving mechanism of the
Corliss steam engine
A Corliss steam engine (or Corliss engine) is a steam engine, fitted with rotary valves and with variable valve timing patented in 1849, invented by and named after the US engineer George Henry Corliss of Providence, Rhode Island. Corliss assumed ...
(Patented. 1849) was better able to adjust speed with varying load and increased efficiency by about 30%. The Corliss engine had separate valves and headers for the inlet and exhaust steam so the hot feed steam never contacted the cooler exhaust ports and valving. The valves were quick acting, which reduced the amount of throttling of the steam and resulted in faster response. Instead of operating a throttling valve, the governor was used to adjust the valve timing to give a variable steam cut-off. The variable cut-off was responsible for a major portion of the efficiency increase of the Corliss engine.
Others before Corliss had at least part of this idea, including
Zachariah Allen, who patented variable cut-off, but lack of demand, increased cost and complexity and poorly developed machining technology delayed introduction until Corliss.
The Porter-Allen high-speed engine (ca. 1862) operated at from three to five times the speed of other similar-sized engines. The higher speed minimized the amount of condensation in the cylinder, resulting in increased efficiency.
Compound engines gave further improvements in efficiency.
By the 1870s triple-expansion engines were being used on ships. Compound engines allowed ships to carry less coal than freight.
Compound engines were used on some locomotives but were not widely adopted because of their mechanical complexity.
A very well-designed and built steam locomotive used to get around 7–8% efficiency in its heyday.
The most efficient reciprocating steam engine design (per stage) was the
uniflow engine, but by the time it appeared steam was being displaced by diesel engines, which were even more efficient and had the advantages of requiring less labor (for coal handling and oiling), being a more dense fuel, and displaced less cargo.
Steam turbine
The
steam turbine
A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work utilising a rotating output shaft. Its modern manifestation was invented by Sir Charles Par ...
is the most efficient steam engine and for this reason is universally used for electrical generation. Steam expansion in a turbine is nearly continuous, which makes a turbine comparable to a very large number of expansion stages. Steam
power stations
A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the electricity generation, generation of electric power. Power stations are generally connected to an electr ...
operating at the
critical point have efficiencies in the low 40% range. Turbines produce direct rotary motion and are far more compact and weigh far less than reciprocating engines and can be controlled to within a very constant speed. As is the case with the gas turbine, the steam turbine works most efficiently at full power, and poorly at slower speeds. For this reason, despite their high power to weight ratio, steam turbines have been primarily used in applications where they can be run at a constant speed. In AC electrical generation maintaining an extremely constant turbine speed is necessary to maintain the correct frequency.
Stirling engines
The
Stirling engine
A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
has the highest theoretical efficiency of any thermal engine but it has a low output power to weight ratio, therefore Stirling engines of practical output tend to be large. The size effect of the Stirling engine is due to its reliance on the expansion of a gas with an increase in temperature and practical limits on the working temperature of engine components. For an ideal gas, increasing its absolute temperature for a given volume, only increases its pressure proportionally, therefore, where the low pressure of the Stirling engine is atmospheric, its practical pressure difference is constrained by temperature limits and is typically not more than a couple of atmospheres, making the piston pressures of the Stirling engine very low, hence relatively large piston areas are required to obtain useful output power.
See also
*
Chrysler Turbine Car
The Chrysler Turbine Car is an experimental two-door hardtop coupé, coupe powered by a gas turbine, turbine engine and was manufactured by Chrysler Corporation, Chrysler from 1963 to 1964. Italian design studio Carrozzeria Ghia constructed the ...
(1963)
*
Fuel efficiency
Fuel efficiency (or fuel economy) is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical energy, chemical potential energy contained in a carrier (fuel) into kinetic energy or Mechanical work, w ...
*
Specific fuel consumption (shaft engine)
*
Specific impulse
Specific impulse (usually abbreviated ) is a measure of how efficiently a reaction mass engine, such as a rocket engine, rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the ''Impulse (physics), ...
References
External links
Fuel Economy, Engine Efficiency & Power
{{DEFAULTSORT:Engine Efficiency
Engine technology