The Engelbert–Schmidt zero–one law is a theorem that gives a mathematical criterion for an event associated with a continuous, non-decreasing additive functional of Brownian motion to have probability either 0 or 1, without the possibility of an intermediate value. This zero-one law is used in the study of questions of finiteness and asymptotic behavior for
stochastic differential equation
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs are used to model various phenomena such as stock pr ...
s. (A
Wiener process
In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is o ...
is a mathematical formalization of Brownian motion used in the statement of the theorem.) This 0-1 law, published in 1981, is named after Hans-Jürgen Engelbert and the probabilist Wolfgang Schmidt (not to be confused with the number theorist
Wolfgang M. Schmidt
Wolfgang M. Schmidt (born 3 October 1933) is an Austrian mathematician working in the area of number theory. He studied mathematics at the University of Vienna, where he received his PhD, which was supervised by Edmund Hlawka, in 1955. Wolfgang ...
).
Engelbert–Schmidt 0–1 law
Let
be a
σ-algebra
In mathematical analysis and in probability theory, a σ-algebra (also σ-field) on a set ''X'' is a collection Σ of subsets of ''X'' that includes the empty subset, is closed under complement, and is closed under countable unions and countabl ...
and let
be an increasing family of sub-''σ''-algebras of
. Let
be a
Wiener process
In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is o ...
on the
probability space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
.
Suppose that
is a
Borel measurable
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below.
F ...
function of the real line into
,∞
Then the following three assertions are equivalent:
(i)
.
(ii)
.
(iii)
for all compact subsets
of the real line.
Extension to stable processes
In 1997 Pio Andrea Zanzotto proved the following extension of the Engelbert–Schmidt zero-one law. It contains Engelbert and Schmidt's result as a special case, since the Wiener process is a real-valued
stable process In probability theory, a stable process is a type of stochastic process. It includes stochastic processes whose associated probability distributions are stable distributions.
Examples of stable processes include the Wiener process, or Brownian mo ...
of index
.
Let
be a
-valued
stable process In probability theory, a stable process is a type of stochastic process. It includes stochastic processes whose associated probability distributions are stable distributions.
Examples of stable processes include the Wiener process, or Brownian mo ...
of index
on the filtered
probability space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
.
Suppose that