In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the elongated triangular tiling is a
semiregular tiling
Euclidean Plane (mathematics), plane Tessellation, tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Johannes Kepler, Kepler in his ''Harmonices Mundi'' (Latin langua ...
of the Euclidean plane. There are three triangles and two squares on each
vertex
Vertex, vertices or vertexes may refer to:
Science and technology Mathematics and computer science
*Vertex (geometry), a point where two or more curves, lines, or edges meet
*Vertex (computer graphics), a data structure that describes the position ...
. It is named as a
triangular tiling
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
elongated
Elongation may refer to:
* Elongation (astronomy)
* Elongation (geometry)
* Elongation (plasma physics)
* Part of transcription of DNA into RNA of all types, including mRNA, tRNA, rRNA, etc.
* Part of translation (biology) of mRNA into proteins
...
by rows of squares, and given
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mor ...
:e.
Conway calls it a isosnub quadrille.
[Conway, 2008, p.288 table]
There are 3
regular
The term regular can mean normal or in accordance with rules. It may refer to:
People
* Moses Regular (born 1971), America football player
Arts, entertainment, and media Music
* "Regular" (Badfinger song)
* Regular tunings of stringed instrum ...
and 8
semiregular tilings in the plane. This tiling is similar to the
snub square tiling
In geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is ''s''.
Conway calls it a snub quadrille, constructed by a snub operation applie ...
which also has 3 triangles and two squares on a vertex, but in a different order.
Construction
It is also the only convex
uniform tiling
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.
Uniform tilings can exist in both the Euclidean plane and Hyperbolic space, hyperbolic plane. Uniform tilings ar ...
that can not be created as a
Wythoff construction
In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction.
Construction process
...
. It can be constructed as alternate layers of
apeirogonal prism
In geometry, an apeirogonal prism or infinite prism is the arithmetic limit of the family of prisms; it can be considered an infinite polyhedron or a tiling of the plane.Conway (2008), p.263
Thorold Gosset called it a ''2-dimensional semi-check ...
s and
apeirogonal antiprism
In geometry, an apeirogonal antiprism or infinite antiprismConway (2008), p. 263 is the arithmetic limit of the family of antiprisms; it can be considered an infinite polyhedron or a tiling of the plane.
If the sides are equilateral triangles, i ...
s.
Uniform colorings
There is one
uniform coloring
In geometry, a uniform coloring is a property of a uniform figure (uniform tiling or uniform polyhedron) that is colored to be vertex-transitive. Different symmetries can be expressed on the same geometric figure with the faces following differ ...
s of an elongated triangular tiling. Two 2-uniform colorings have a single vertex figure, 11123, with two colors of squares, but are not 1-uniform, repeated either by reflection or glide reflection, or in general each row of squares can be shifted around independently. The 2-uniform tilings are also called
Archimedean colorings. There are infinite variations of these Archimedean colorings by arbitrary shifts in the square row colorings.
Circle packing
The elongated triangular tiling can be used as a
circle packing
In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap. The associated '' packing de ...
, placing equal diameter circles at the center of every point. Every circle is in contact with 5 other circles in the packing (
kissing number
In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement o ...
).
[Order in Space: A design source book, Keith Critchlow, p.74-75, circle pattern F]
:
Related tilings
Sections of stacked triangles and squares can be combined into radial forms. This mixes two vertex configurations, 3.3.3.4.4 and 3.3.4.3.4 on the transitions. Twelve copies are needed to fill the plane with different center arrangements. The duals will mix in
cairo pentagonal tiling
In geometry, a Cairo pentagonal tiling is a tessellation of the Euclidean plane by congruent convex pentagons, formed by overlaying two tessellations of the plane by hexagons and named for its use as a paving design in Cairo. It is also called Ma ...
pentagons.
Symmetry mutations
It is first in a series of symmetry mutations with
hyperbolic uniform tilings with 2*''n''2
orbifold notation
In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advant ...
symmetry,
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
4.''n''.4.3.3.3, and
Coxeter diagram
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington t ...
. Their duals have hexagonal faces in the hyperbolic plane, with
V4.''n''.4.3.3.3.
There are four related
2-uniform tiling
A ''k''-uniform tiling is a tiling of Tessellation, tilings of the plane by convex regular polygons, connected edge-to-edge, with ''k'' types of vertices. The 1-uniform tiling include 3 regular tilings, and 8 semiregular tilings. A 1-uniform tilin ...
s, mixing 2 or 3 rows of triangles or squares.
Prismatic pentagonal tiling
The prismatic pentagonal tiling is a
dual uniform tiling in the Euclidean plane. It is one of 15 known
isohedral
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
pentagon tiling
In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon.
A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon, 108°, is not a ...
s. It can be seen as a stretched
hexagonal tiling
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling).
English mathema ...
with a set of parallel bisecting lines through the hexagons.
Conway calls it an .
Each of its pentagonal
faces has three 120° and two 90° angles.
It is related to the
Cairo pentagonal tiling
In geometry, a Cairo pentagonal tiling is a tessellation of the Euclidean plane by congruent convex pentagons, formed by overlaying two tessellations of the plane by hexagons and named for its use as a paving design in Cairo. It is also called Ma ...
with
V3.3.4.3.4.
Geometric variations
Monohedral
pentagonal tiling
In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon.
A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon, 108°, is not ...
type 6 has the same topology, but two edge lengths and a lower p2 (2222)
wallpaper group
A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. To a given wallpaper there corresponds a group of such congruent transformat ...
symmetry:
Related 2-uniform dual tilings
There are four related 2-uniform dual tilings, mixing in rows of squares or hexagons (the prismatic pentagon is half-square half-hexagon).
See also
*
Tilings of regular polygons
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his '' Harmonices Mundi'' ( Latin: ''The Harmony of the World'', 1619).
Notation of ...
*
Elongated triangular prismatic honeycomb
The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed entirely of triangular prisms.
It is constructed from a triangular tiling extruded into pri ...
*
Gyroelongated triangular prismatic honeycomb
The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed entirely of triangular prisms.
It is constructed from a triangular tiling extruded into p ...
Notes
References
* (Chapter 2.1: ''Regular and uniform tilings'', p. 58-65)
* p37
* John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008,
* Keith Critchlow, ''Order in Space: A design source book'', 1970, p. 69-61, Pattern Q
2, Dual p. 77-76, pattern 6
* Dale Seymour and
Jill Britton, ''Introduction to Tessellations'', 1989, , pp. 50–56
External links
*
*
*
{{Tessellation
Euclidean tilings
Isogonal tilings
Semiregular tilings
Triangular tilings