Elliptic geometry is an example of a
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
in which Euclid's
parallel postulate
In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry:
''If a line segment ...
does not hold. Instead, as in
spherical geometry
300px, A sphere with a spherical triangle on it.
Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two). Because of this, the elliptic geometry described in this article is sometimes referred to as ''single elliptic geometry'' whereas spherical geometry is sometimes referred to as ''double elliptic geometry''.
The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including
hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P' ...
.
Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior
angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles ...
s of any
triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
is always greater than 180°.
Definitions
In elliptic geometry, two lines
perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to a given line must intersect. In fact, the perpendiculars on one side all intersect at a single point called the ''absolute pole'' of that line. The perpendiculars on the other side also intersect at a point. However, unlike in spherical geometry, the poles on either side are the same. This is because there are no
antipodal points
In mathematics, antipodal points of a sphere are those diametrically opposite to each other (the specific qualities of such a definition are that a line drawn from the one to the other passes through the center of the sphere so forms a true ...
in elliptic geometry. For example, this is achieved in the hyperspherical model (described below) by making the "points" in our geometry actually be pairs of opposite points on a sphere. The reason for doing this is that it allows elliptic geometry to satisfy the axiom that there is a unique line passing through any two points.
Every point corresponds to an ''absolute polar line'' of which it is the absolute pole. Any point on this polar line forms an ''absolute conjugate pair'' with the pole. Such a pair of points is ''orthogonal'', and the distance between them is a ''quadrant''.
[ Duncan Sommerville (1914) ''The Elements of Non-Euclidean Geometry'', chapter 3 Elliptic geometry, pp 88 to 122, ]George Bell & Sons
George Bell & Sons was a book publishing house located in London, United Kingdom, from 1839 to 1986.
History
George Bell & Sons was founded by George Bell as an educational bookseller, with the intention of selling the output of London un ...
The distance between a pair of points is proportional to the angle between their absolute polars.
[
As explained by H. S. M. Coxeter:
:The name "elliptic" is possibly misleading. It does not imply any direct connection with the curve called an ellipse, but only a rather far-fetched analogy. A central conic is called an ellipse or a hyperbola according as it has no asymptote or two ]asymptote
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
s. Analogously, a non-Euclidean plane is said to be elliptic or hyperbolic according as each of its line
Line most often refers to:
* Line (geometry), object with zero thickness and curvature that stretches to infinity
* Telephone line, a single-user circuit on a telephone communication system
Line, lines, The Line, or LINE may also refer to:
Art ...
s contains no point at infinity or two points at infinity.
Two dimensions
Elliptic plane
The elliptic plane is the real projective plane
In mathematics, the real projective plane is an example of a compact non- orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has ...
provided with a metric: Kepler and Desargues
Girard Desargues (; 21 February 1591 – September 1661) was a French mathematician and engineer, who is considered one of the founders of projective geometry. Desargues' theorem, the Desargues graph, and the crater Desargues (crater), Desarg ...
used the gnomonic projection
A gnomonic map projection is a map projection which displays all great circles as straight lines, resulting in any straight line segment on a gnomonic map showing a geodesic, the shortest route between the segment's two endpoints. This is achie ...
to relate a plane σ to points on a hemisphere tangent to it. With ''O'' the center of the hemisphere, a point ''P'' in σ determines a line ''OP'' intersecting the hemisphere, and any line ''L'' ⊂ σ determines a plane ''OL'' which intersects the hemisphere in half of a great circle
In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.
Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry ...
. The hemisphere is bounded by a plane through O and parallel to σ. No ordinary line of ''σ'' corresponds to this plane; instead a line at infinity is appended to ''σ''. As any line in this extension of σ corresponds to a plane through ''O'', and since any pair of such planes intersects in a line through ''O'', one can conclude that any pair of lines in the extension intersect: the point of intersection lies where the plane intersection meets σ or the line at infinity. Thus the axiom of projective geometry, requiring all pairs of lines in a plane to intersect, is confirmed.
Given ''P'' and ''Q'' in ''σ'', the elliptic distance between them is the measure of the angle ''POQ'', usually taken in radians. Arthur Cayley initiated the study of elliptic geometry when he wrote "On the definition of distance". This venture into abstraction in geometry was followed by Felix Klein
Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
and Bernhard Riemann leading to non-Euclidean geometry
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ...
and Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to po ...
.
Comparison with Euclidean geometry
In Euclidean geometry, a figure can be scaled up or scaled down indefinitely, and the resulting figures are similar, i.e., they have the same angles and the same internal proportions. In elliptic geometry, this is not the case. For example, in the spherical model we can see that the distance between any two points must be strictly less than half the circumference of the sphere (because antipodal points are identified). A line segment therefore cannot be scaled up indefinitely. A geometer measuring the geometrical properties of the space he or she inhabits can detect, via measurements, that there is a certain distance scale that is a property of the space. On scales much smaller than this one, the space is approximately flat, geometry is approximately Euclidean, and figures can be scaled up and down while remaining approximately similar.
A great deal of Euclidean geometry carries over directly to elliptic geometry. For example, the first and fourth of Euclid's postulates, that there is a unique line between any two points and that all right angles are equal, hold in elliptic geometry. Postulate 3, that one can construct a circle with any given center and radius, fails if "any radius" is taken to mean "any real number", but holds if it is taken to mean "the length of any given line segment". Therefore any result in Euclidean geometry that follows from these three postulates will hold in elliptic geometry, such as proposition 1 from book I of the ''Elements'', which states that given any line segment, an equilateral triangle can be constructed with the segment as its base.
Elliptic geometry is also like Euclidean geometry in that space is continuous, homogeneous, isotropic, and without boundaries. Isotropy is guaranteed by the fourth postulate, that all right angles are equal. For an example of homogeneity, note that Euclid's proposition I.1 implies that the same equilateral triangle can be constructed at any location, not just in locations that are special in some way. The lack of boundaries follows from the second postulate, extensibility of a line segment.
One way in which elliptic geometry differs from Euclidean geometry is that the sum of the interior angles of a triangle is greater than 180 degrees. In the spherical model, for example, a triangle can be constructed with vertices at the locations where the three positive Cartesian coordinate axes intersect the sphere, and all three of its internal angles are 90 degrees, summing to 270 degrees. For sufficiently small triangles, the excess over 180 degrees can be made arbitrarily small.
The Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposit ...
fails in elliptic geometry. In the 90°–90°–90° triangle described above, all three sides have the same length, and consequently do not satisfy . The Pythagorean result is recovered in the limit of small triangles.
The ratio of a circle's circumference to its area is smaller than in Euclidean geometry. In general, area and volume do not scale as the second and third powers of linear dimensions.
Elliptic space (the 3D case)
''Note: This section uses the term "elliptic space" to refer specifically to 3-dimensional elliptic geometry. This is in contrast to the previous section, which was about 2-dimensional elliptic geometry. The quaternions are used to elucidate this space.''
Elliptic space can be constructed in a way similar to the construction of three-dimensional vector space: with equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es. One uses directed arcs on great circles of the sphere. As directed line segments are equipollent
In mathematics, two sets or classes ''A'' and ''B'' are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', the ...
when they are parallel, of the same length, and similarly oriented, so directed arcs found on great circles are equipollent when they are of the same length, orientation, and great circle. These relations of equipollence produce 3D vector space and elliptic space, respectively.
Access to elliptic space structure is provided through the vector algebra of William Rowan Hamilton
Sir William Rowan Hamilton LL.D, DCL, MRIA, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ire ...
: he envisioned a sphere as a domain of square roots of minus one. Then Euler's formula
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for ...
(where ''r'' is on the sphere) represents the great circle
In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.
Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry ...
in the plane containing 1 and ''r''. Opposite points ''r'' and –''r'' correspond to oppositely directed circles. An arc between θ and φ is equipollent with one between 0 and φ – θ. In elliptic space, arc length is less than π, so arcs may be parametrized with θ in , π) or (–π/2, π/2
For It is said that the modulus or norm of ''z'' is one (Hamilton called it the tensor of z). But since ''r'' ranges over a sphere in 3-space, exp(θ r) ranges over a sphere in 4-space, now called the 3-sphere
In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may