HOME

TheInfoList



OR:

Ellipsoidal coordinates are a three-dimensional
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
coordinate system (\lambda, \mu, \nu) that generalizes the two-dimensional
elliptic coordinate system In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci F_ and F_ are generally taken to be fixed at -a and +a, respectivel ...
. Unlike most three-dimensional
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
coordinate systems that feature
quadratic In mathematics, the term quadratic describes something that pertains to squares, to the operation of squaring, to terms of the second degree, or equations or formulas that involve such terms. ''Quadratus'' is Latin for ''square''. Mathematics ...
coordinate surfaces, the ellipsoidal coordinate system is based on
confocal quadrics In geometry, two conic sections are called confocal, if they have the same foci. Because ellipses and hyperbolas possess two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. In the mixture o ...
.


Basic formulae

The Cartesian coordinates (x, y, z) can be produced from the ellipsoidal coordinates ( \lambda, \mu, \nu ) by the equations : x^ = \frac : y^ = \frac : z^ = \frac where the following limits apply to the coordinates : - \lambda < c^ < - \mu < b^ < -\nu < a^. Consequently, surfaces of constant \lambda are
ellipsoid An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a surface that may be defined as the ...
s : \frac + \frac + \frac = 1, whereas