In
mathematicsspecifically, in the
theory of stochastic processesDoob's martingale convergence theorems are a collection of results on the
limits
Limit or Limits may refer to:
Arts and media
* ''Limit'' (manga), a manga by Keiko Suenobu
* ''Limit'' (film), a South Korean film
* Limit (music), a way to characterize harmony
* "Limit" (song), a 2016 single by Luna Sea
* "Limits", a 2019 ...
of
supermartingale
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all pr ...
s, named after the American mathematician
Joseph L. Doob
Joseph Leo Doob (February 27, 1910 – June 7, 2004) was an American mathematician, specializing in analysis and probability theory.
The theory of martingales was developed by Doob.
Early life and education
Doob was born in Cincinnati, Ohio, ...
. Informally, the martingale convergence theorem typically refers to the result that any supermartingale satisfying a certain boundedness condition must converge. One may think of supermartingales as the random variable analogues of non-increasing sequences; from this perspective, the martingale convergence theorem is a
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the p ...
analogue of the
monotone convergence theorem
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences (sequences that are non-decreasing or non-increasing) that are also bounded. Info ...
, which states that any bounded monotone sequence converges. There are symmetric results for submartingales, which are analogous to non-decreasing sequences.
Statement for discrete-time martingales
A common formulation of the martingale convergence theorem for discrete-time martingales is the following. Let
be a supermartingale. Suppose that the supermartingale is bounded in the sense that
:
where
is the negative part of
, defined by
. Then the sequence converges
almost surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0 ...
to a random variable
with finite expectation.
There is a symmetric statement for submartingales with bounded expectation of the positive part. A supermartingale is a stochastic analogue of a non-increasing sequence, and the condition of the theorem is analogous to the condition in the monotone convergence theorem that the sequence be bounded from below. The condition that the martingale is bounded is essential; for example, an unbiased
random walk is a martingale but does not converge.
As intuition, there are two reasons why a sequence may fail to converge. It may go off to infinity, or it may oscillate. The boundedness condition prevents the former from happening. The latter is impossible by a "gambling" argument. Specifically, consider a stock market game in which at time
, the stock has price
. There is no strategy for buying and selling the stock over time, always holding a non-negative amount of stock, which has positive expected profit in this game. The reason is that at each time the expected change in stock price, given all past information, is at most zero (by definition of a supermartingale). But if the prices were to oscillate without converging, then there would be a strategy with positive expected profit: loosely, buy low and sell high. This argument can be made rigorous to prove the result.
Proof sketch
The proof is simplified by making the (stronger) assumption that the supermartingale is uniformly bounded; that is, there is a constant
such that
always holds. In the event that the sequence
does not converge, then
and
differ. If also the sequence is bounded, then there are some real numbers
and
such that
and the sequence crosses the interval