In the
mathematical
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of
analysis
Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
, Dini's theorem says that if a monotone sequence of
continuous functions
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
converges pointwise on a compact space and if the limit function is also continuous, then the convergence is uniform.
Formal statement
If
is a
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact, a type of agreement used by U.S. states
* Blood compact, an ancient ritual of the Philippines
* Compact government, a t ...
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
, and
is a
monotonically increasing
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of orde ...
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
(meaning
for all
and
) of
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous ...
real-valued function
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.
Real-valued functions of a real variable (commonly called ''real ...
s on
which converges
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some Function (mathematics), function f. An important class of pointwise concepts are the ''pointwise operations'', that ...
to a continuous function
, then the convergence is
uniform
A uniform is a variety of costume worn by members of an organization while usually participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency serv ...
. The same conclusion holds if
is monotonically decreasing instead of increasing. The theorem is named after
Ulisse Dini
Ulisse Dini (14 November 1845 – 28 October 1918) was an Italian mathematician and politician, born in Pisa. He is known for his contributions to real analysis, partly collected in his book "''Fondamenti per la teorica delle funzioni di variabil ...
.
[According to , " his theoremis called Dini's theorem because Ulisse Dini (1845–1918) presented the original version of it in his book on the theory of functions of a real variable, published in Pisa in 1878".]
This is one of the few situations in mathematics where pointwise convergence implies uniform convergence; the key is the greater control implied by the monotonicity. The limit function must be continuous, since a uniform limit of continuous functions is necessarily continuous. The continuity of the limit function cannot be inferred from the other hypothesis (consider
in