In
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''a ...
, a dialgebra is the generalization of both
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary a ...
and
coalgebra. The notion was originally introduced by Lambek as "subequalizers",
[ and named as dialgebras by Tatsuya Hagino.] Many algebraic notions have previously been generalized to dialgebras. Dialgebra also attempts to obtain Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
s from associated algebras.
See also
*F-algebra
In mathematics, specifically in category theory, ''F''-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algeb ...
References
Further reading
dialgebra in nLab
Algebraic structures
{{algebra-stub