A DNA machine is a
molecular machine
Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switch ...
constructed from
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
. Research into DNA machines was pioneered in the late 1980s by
Nadrian Seeman and co-workers from
New York University
New York University (NYU) is a private university, private research university in New York City, New York, United States. Chartered in 1831 by the New York State Legislature, NYU was founded in 1832 by Albert Gallatin as a Nondenominational ...
. DNA is used because of the numerous biological tools already found in nature that can affect DNA, and the immense knowledge of how DNA works previously researched by
biochemist
Biochemists are scientists who are trained in biochemistry. They study chemical processes and chemical transformations in living organisms. Biochemists study DNA, proteins and Cell (biology), cell parts. The word "biochemist" is a portmanteau of ...
s.
DNA machines can be logically designed since DNA assembly of the double helix is based on strict rules of base pairing that allow portions of the strand to be predictably connected based on their sequence. This "selective stickiness" is a key advantage in the construction of DNA machines.
An example of a DNA machine was reported by
Bernard Yurke and co-workers at
Lucent Technologies
Lucent Technologies, Inc. was an American Multinational corporation, multinational telecommunications equipment company headquartered in Murray Hill, New Jersey, Murray Hill, New Jersey. It was established on September 30, 1996, through the div ...
in the year 2000, who constructed
molecular tweezers out of DNA.
The DNA tweezers contain three strands: A, B and C. Strand A latches onto half of strand B and half of strand C, and so it joins them all together. Strand A acts as a hinge so that the two "arms" — AB and AC — can move. The structure floats with its arms open wide. They can be pulled shut by adding a fourth strand of DNA (D) "programmed" to stick to both of the dangling, unpaired sections of strands B and C. The closing of the tweezers was proven by tagging strand A at either end with light-emitting molecules that do not emit light when they are close together. To re-open the tweezers add a further strand (E) with the right sequence to pair up with strand D. Once paired up, they have no connection to the machine BAC, so float away. The DNA machine can be opened and closed repeatedly by cycling between strands D and E. These tweezers can be used for removing drugs from inside
fullerenes
A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to six atoms. The molecules may have hollow sphere- ...
as well as from a self assembled DNA
tetrahedron
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
. The state of the device can be determined by measuring the separation between donor and acceptor fluorophores using
FRET
A fret is any of the thin strips of material, usually metal wire, inserted laterally at specific positions along the neck or fretboard of a stringed instrument. Frets usually extend across the full width of the neck. On some historical inst ...
.
DNA walkers are another type of DNA machine.
See also
*
DNA nanotechnology
References
DNA nanotechnology
Genetics techniques
Molecular machines
{{genetics-stub