
The Cray-2 is a
supercomputer
A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instruc ...
with four
vector processors made by
Cray Research starting in 1985. At 1.9
GFLOPS peak performance, it was the fastest machine in the world when it was released, replacing the
Cray X-MP in that spot. It was, in turn, replaced in that spot by the
Cray Y-MP in 1988.
The Cray-2 was the first of
Seymour Cray's designs to successfully use multiple CPUs. This had been attempted in the
CDC 8600 in the early 1970s, but the
emitter-coupled logic (ECL)
transistor
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
s of the era were too difficult to package into a working machine. The Cray-2 addressed this through the use of ECL
integrated circuit
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s, packing them in a novel 3D wiring that greatly increased circuit density.
The dense packaging and resulting heat loads were a major problem for the Cray-2. This was solved in a unique fashion by forcing the electrically inert
Fluorinert liquid through the circuitry under pressure and then cooling it outside the processor box. The unique "waterfall" cooler system came to represent high-performance computing in the public eye and was found in many informational films and as a movie prop for some time.
Unlike the original Cray-1, the Cray-2 had difficulties delivering peak performance. Other machines from the company, like the X-MP and Y-MP, outsold the Cray-2 by a wide margin. When Cray began development of the
Cray-3, the company chose to develop the
Cray C90 series instead. This is the same sequence of events that occurred when the 8600 was being developed, and as in that case, Cray left the company.
Initial design
With the successful launch of his famed
Cray-1,
Seymour Cray turned to the design of its successor. By 1979 he had become fed up with management interruptions in what was now a large company, and as he had done in the past, decided to resign his management post and move to form a new lab. As with his original move to
Chippewa Falls, Wisconsin from
Control Data HQ in
Minneapolis, Minnesota
Minneapolis is a city in Hennepin County, Minnesota, United States, and its county seat. With a population of 429,954 as of the 2020 United States census, 2020 census, it is the state's List of cities in Minnesota, most populous city. Locat ...
, Cray management understood his needs and supported his move to a new lab in
Boulder, Colorado
Boulder is a List of municipalities in Colorado#Home rule municipality, home rule city in Boulder County, Colorado, United States, and its county seat. With a population of 108,250 at the 2020 United States census, 2020 census, it is the most ...
. Working as an independent consultant at these new Cray Labs, starting in 1980 he put together a team and started on a completely new design. This lab would later close, and a decade later a new facility in
Colorado Springs would open.
Cray had previously attacked the problem of increased speed with three simultaneous advances: more functional units to give the system higher parallelism, tighter packaging to decrease signal delays, and faster components to allow for a higher clock speed. The classic example of this design is the
CDC 8600, which packed four
CDC 7600-like machines based on
ECL logic into a 1 × 1 meter cylinder and ran them at an 8
ns cycle speed (125
MHz
The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose formal expression in terms of SI base u ...
). Unfortunately, the density needed to achieve this cycle time led to the machine's downfall. The circuit boards inside were densely packed, and since even a single malfunctioning
transistor
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
would cause an entire module to fail, packing more of them onto the cards greatly increased the chance of failure. Cooling the closely packed individual components also represented a major challenge.
One solution to this problem, one that most computer vendors had already moved to, was to use
integrated circuit
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s (ICs) instead of individual components. Each IC included a selection of components from a module pre-wired into a circuit by the automated construction process. If an IC did not work, another one would be tried. At the time the 8600 was being designed the simple
MOSFET
upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale.
In electronics, the metal–oxide–semiconductor field- ...
-based technology did not offer the speed Cray needed. Relentless improvements changed things by the mid-1970s, however, and the
Cray-1 had been able to use newer ICs and still run at a respectable 12.5 ns (80 MHz). In fact, the Cray-1 was actually somewhat faster than the 8600 because it packed considerably more logic into the system due to the ICs' small size.
Although IC design continued to improve, the physical size of the ICs was constrained largely by mechanical limits; the resulting component had to be large enough to solder into a system. Dramatic improvements in density were possible, as the rapid improvement in
microprocessor
A microprocessor is a computer processor (computing), processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, a ...
design was showing, but for the type of ICs used by Cray, ones representing a very small part of a complete circuit, the design had plateaued. In order to gain another 10-fold increase in performance over the Cray-1, the goal Cray aimed for, the machine would have to grow more complex. So once again he turned to an 8600-like solution, doubling the clock speed through increased density, adding more of these smaller processors into the basic system, and then attempting to deal with the problem of getting heat out of the machine.
Another design problem was the increasing performance gap between the processor and
main memory
Computer data storage or digital data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.
The central processin ...
. In the era of the
CDC 6600 memory ran at the same speed as the processor, and the main problem was feeding data into it. Cray solved this by adding ten smaller computers to the system, allowing them to deal with the slower external storage (disks and tapes) and "squirt" data into memory when the main processor was busy. This solution no longer offered any advantages; memory was large enough that entire data sets could be read into it, but the processors ran so much faster than memory that they would often spend long times waiting for data to arrive. Adding four processors simply made this problem worse.
To avoid this problem the new design banked memory and two sets of registers (the B- and T-registers) were replaced with a 16
KWord block of the very fastest memory possible called a ''Local Memory,'' not a cache, attaching the four ''background processors'' to it with separate high-speed pipes. This Local Memory was fed data by a dedicated ''foreground processor'' which was in turn attached to the main memory through a Gbit/s channel per CPU; X-MPs by contrast had three, for two simultaneous loads and a store and Y-MP/C-90s had five channels to avoid the
von Neumann bottleneck
The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on the '' First Draft of a Report on the EDVAC'', written by John von Neumann in 1945, describing designs discus ...
. It was the foreground processor's task to "run" the computer, handling storage and making efficient use of the multiple channels into main memory. It drove the background processors by passing in the instructions they should run via eight 16-
word
A word is a basic element of language that carries semantics, meaning, can be used on its own, and is uninterruptible. Despite the fact that language speakers often have an intuitive grasp of what a word is, there is no consensus among linguist ...
buffers, instead of tying up the existing cache pipes to the background processors. Modern CPUs use a variation of this design as well, although the foreground processor is now referred to as the ''load/store unit'' and is not a complete machine unto its own.
Main memory banks were arranged in quadrants to be accessed at the same time, allowing programmers to scatter their data across memory to gain higher parallelism. The downside to this approach is that the cost of setting up the ''scatter/gather unit'' in the foreground processor was fairly high. Stride conflicts corresponding to the number of memory banks suffered a performance penalty (latency) as occasionally happened in power-of-2 FFT-based algorithms. As the Cray 2 had a much larger memory than Cray 1s or X-MPs, this problem was easily rectified by adding an extra unused element to an array to spread the work out.
Packed circuit boards and new design ideas
Early Cray-2 models soon settled on a design using large circuit boards packed with ICs. This made them extremely difficult to solder together, and the density was still not enough to reach their performance goals. Teams worked on the design for about two years before even Cray himself "gave up" and decided it would be best if they simply canceled the project and fired everyone working on it. Les Davis, Cray's former design collaborator who had remained at Cray headquarters, decided it should be continued at low priority. After some minor personnel movements, the team continued on much as before.
Six months later Cray had his "
eureka" moment. He called the main engineers together for a meeting and presented a new solution to the problem. Instead of making one larger circuit board, each "card" would instead consist of a 3-D stack of eight, connected together in the middle of the boards using pins sticking up from the surface (known as "pogos" or "z-pins"). The cards were packed right on top of each other, so the resulting stack was only about 30 mm high.
With this sort of density there was no way any conventional air-cooled system would work; there was too little room for air to flow between the ICs. Instead the system would be immersed in a tank of a new inert liquid from
3M,
Fluorinert. The cooling liquid was forced sideways through the modules under pressure, and the flow rate was roughly one inch per second. The heated liquid was cooled using chilled water heat exchangers and returned to the main tank. Work on the new design started in earnest in 1982, several years after the original start date.
While this was going on the
Cray X-MP was being developed under the direction of
Steve Chen at Cray headquarters, and looked like it would give the Cray-2 a serious run for its money. In order to address this internal threat, as well as a series of newer Japanese Cray-1-like machines, the Cray-2 memory system was dramatically improved, both in size as well as the number of "pipes" into the processors. When the machine was eventually delivered in 1985, the delays had been so long that much of its performance benefits were due to the faster memory. Purchasing the machine really made sense only for users with huge data sets to process.
The first Cray-2 delivered possessed more physical memory (256
MWord) than all previously delivered Cray machines combined. Simulation moved from a 2-D realm or coarse 3-D to a finer 3-D realm because computation did not have to rely on slow virtual memory.
Uses and successors
The Cray-2 was predominantly developed for the
United States
The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
Departments of
Defense
Defense or defence may refer to:
Tactical, martial, and political acts or groups
* Defense (military), forces primarily intended for warfare
* Civil defense, the organizing of civilians to deal with emergencies or enemy attacks
* Defense industr ...
and
Energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
. Uses tended to be for
nuclear weapon
A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
s research or
oceanographic (
sonar) development. However, the first Cray-2 (serial number 1) was used at the
National Magnetic Fusion Energy Computer Center at
Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
for unclassified energy research. It also found its way into civil agencies (such as
NASA Ames Research Center), universities, and corporations worldwide. For example,
Ford and
General Motors
General Motors Company (GM) is an American Multinational corporation, multinational Automotive industry, automotive manufacturing company headquartered in Detroit, Michigan, United States. The company is most known for owning and manufacturing f ...
both used the Cray-2 for processing complex
Finite Element Analysis
Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical models, mathematical modeling. Typical problem areas of interest include the traditional fields of structural ...
models of car bodyshells, and for performing virtual crash testing of bodyshell components prior to production.
The Cray-2 would have been superseded by the
Cray-3, but due to development problems only a single Cray-3 was built and it was never paid for. The spiritual descendant of the Cray-2 is the
Cray X1, offered by
Cray.
Comparison to later computers
In 2012, Piotr Luszczek (a former doctoral student of
Jack Dongarra), presented results showing that an
iPad 2 matched the historical performance of the Cray-2 on an embedded
LINPACK benchmark.
Trivia
Due to the use of liquid cooling, the Cray-2 was given the nickname "Bubbles", and common jokes around the computer made reference to this unique system. Gags included "No Fishing" signs, cardboard depictions of the
Loch Ness Monster
The Loch Ness Monster (), known affectionately as Nessie, is a mythical creature in Scottish folklore that is said to inhabit Loch Ness in the Scottish Highlands. It is often described as large, long-necked, and with one or more humps protrud ...
rising out of the heat exchanger tank, plastic fish inside the exchanger, etc. The power consumption of the Cray-2 was 150–200 kW. Research conducted at the Lawrence Livermore National Laboratory in the early 1990s indicated that to a limited extent the perfluorinated polyether used to cool Cray-2 circuits would break down to form the extremely toxic gas
perfluoroisobutylene. At the time, Cray had created a poster showing the transparent "bubble chamber" that the cooling fluid was run through for visual effect, with a spill of the same material glistening on the floor—the joke was that if this actually occurred, the facility would have to be evacuated.
[Kelly, R. J., Personal Experience] The manufacturer of the liquid developed a scrubber that could be placed in line with the pump that would catalytically degrade this toxic breakdown product.
Each vertical stack of logic modules sat above a stack of power modules which powered 5 volt
busbars, each of which delivered about 2200 amps. The Cray-2 was powered by two motor-generators, which took in 480 V
three-phase.
See also
*
History of supercomputing
References
External links
Cray-2 module picturesCray-2 Functional Description ManualCray-2 Brochure
{{Cray computers
Computer-related introductions in 1985
2
Vector supercomputers
64-bit computers