Rotation in
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
is a concept originating in
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
. Any rotation is a
motion
In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an o ...
of a certain
space
Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
that preserves at least one
point. It can describe, for example, the motion of a
rigid body
In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible, when a deforming pressure or deforming force is applied on it. The distance between any two given points on a rigid body rema ...
around a fixed point. Rotation can have a
sign
A sign is an object, quality, event, or entity whose presence or occurrence indicates the probable presence or occurrence of something else. A natural sign bears a causal relation to its object—for instance, thunder is a sign of storm, or me ...
(as in the
sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.
A rotation is different from other types of motions:
translations
Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transl ...
, which have no fixed points, and
(hyperplane) reflections, each of them having an entire -dimensional
flat of fixed points in a -
dimensional space.
Mathematically, a rotation is a
map
A map is a symbolic depiction of interrelationships, commonly spatial, between things within a space. A map may be annotated with text and graphics. Like any graphic, a map may be fixed to paper or other durable media, or may be displayed on ...
. All rotations about a fixed point form a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
under
composition
Composition or Compositions may refer to:
Arts and literature
*Composition (dance), practice and teaching of choreography
* Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
called the rotation group (of a particular space). But in
mechanics
Mechanics () is the area of physics concerned with the relationships between force, matter, and motion among Physical object, physical objects. Forces applied to objects may result in Displacement (vector), displacements, which are changes of ...
and, more generally, in
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, this concept is frequently understood as a
coordinate transformation
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
(importantly, a transformation of an
orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite Dimension (linear algebra), dimension is a Basis (linear algebra), basis for V whose vectors are orthonormal, that is, they are all unit vec ...
), because for any motion of a body there is an inverse transformation which if applied to the
frame of reference
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale have been specified in physical space. It ...
results in the body being at the same coordinates. For example, in two dimensions rotating a body
clockwise
Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to ...
about a point keeping the axes fixed is equivalent to rotating the axes counterclockwise about the same point while the body is kept fixed. These two types of rotation are called
active and passive transformation
Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system ('' alibi'' meaning "being somewhe ...
s.
Related definitions and terminology
The ''rotation group'' is a
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
of rotations about a
fixed point. This (common) fixed point or
center is called the center of rotation and is usually identified with the
origin. The rotation group is a ''
point stabilizer
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S.
Many sets of transformations form a group under funct ...
'' in a broader group of (orientation-preserving)
motions.
For a particular rotation:
* The ''
axis of rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
'' is a
line of its fixed points. They exist only in .
* The ''
plane of rotation
In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space.
The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can ...
'' is a
plane that is
invariant under the rotation. Unlike the axis, its points are not fixed themselves. The axis (where present) and the plane of a rotation are
orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
.
A ''representation'' of rotations is a particular formalism, either algebraic or geometric, used to parametrize a rotation map. This meaning is somehow inverse to
the meaning in the group theory.
Rotations of
(affine) spaces of points and of respective
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s are not always clearly distinguished. The former are sometimes referred to as ''affine rotations'' (although the term is misleading), whereas the latter are ''vector rotations''. See the article below for details.
Definitions and representations
In Euclidean geometry
A motion of a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
is the same as its
isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
: it leaves
the distance between any two points unchanged after the transformation. But a (proper) rotation also has to preserve the
orientation structure. The "
improper rotation
In geometry, an improper rotation. (also called rotation-reflection, rotoreflection, rotary reflection,. or rotoinversion) is an isometry in Euclidean space that is a combination of a Rotation (geometry), rotation about an axis and a reflection ( ...
" term refers to isometries that reverse (flip) the orientation. In the language of
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
the distinction is expressed as ''direct'' vs ''indirect'' isometries in the
Euclidean group
In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformati ...
, where the former comprise the
identity component
In mathematics, specifically group theory, the identity component of a group (mathematics) , group ''G'' (also known as its unity component) refers to several closely related notions of the largest connected space , connected subgroup of ''G'' co ...
. Any direct Euclidean motion can be represented as a composition of a rotation about the fixed point and a translation.
In
one-dimensional space
A one-dimensional space (1D space) is a mathematical space in which location can be specified with a single coordinate. An example is the number line, each point of which is described by a single real number.
Any straight line or smooth curv ...
, there are only
trivial rotations. In
two dimensions
A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimensional s ...
, only a single
angle
In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
is needed to specify a rotation about the
origin – the ''angle of rotation'' that specifies an element of the
circle group
In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers
\mathbb T = \.
The circle g ...
(also known as ). The rotation is acting to rotate an object
counterclockwise
Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to ...
through an angle about the
origin; see
below
Below may refer to:
*Earth
*Ground (disambiguation)
*Soil
*Floor
* Bottom (disambiguation)
*Less than
*Temperatures below freezing
*Hell or underworld
People with the surname
* Ernst von Below (1863–1955), German World War I general
* Fred Belo ...
for details. Composition of rotations
sums
In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynom ...
their angles
modulo
In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation.
Given two positive numbers and , mo ...
1
turn, which implies that all two-dimensional rotations about ''the same'' point
commute. Rotations about ''different'' points, in general, do not commute. Any two-dimensional direct motion is either a translation or a rotation; see
Euclidean plane isometry In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations, rotations, reflections, a ...
for details.
Rotations in
three-dimensional space
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values ('' coordinates'') are required to determine the position of a point. Most commonly, it is the three- ...
differ from those in two dimensions in a number of important ways. Rotations in three dimensions are generally not
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, so the order in which rotations are applied is important even about the same point. Also, unlike the two-dimensional case, a three-dimensional direct motion, in
general position
In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that a ...
, is not a rotation but a
screw operation. Rotations about the origin have three degrees of freedom (see
rotation formalisms in three dimensions
In geometry, there exist various rotation formalisms to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science o ...
for details), the same as the number of dimensions.
A three-dimensional rotation can be specified in a number of ways. The most usual methods are:
*
Euler angles
The Euler angles are three angles introduced by Leonhard Euler to describe the Orientation (geometry), orientation of a rigid body with respect to a fixed coordinate system.Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189� ...
(pictured at the left). Any rotation about the origin can be represented as the
composition
Composition or Compositions may refer to:
Arts and literature
*Composition (dance), practice and teaching of choreography
* Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
of three rotations defined as the motion obtained by changing one of the Euler angles while leaving the other two constant. They constitute a mixed axes of rotation system because angles are measured with respect to a mix of different
reference frames
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points, defined as geometric ...
, rather than a single frame that is purely external or purely intrinsic. Specifically, the first angle moves the
line of nodes around the external axis ''z'', the second rotates around the line of nodes and the third is an intrinsic rotation (a spin) around an axis fixed in the body that moves. Euler angles are typically denoted as
''α'',
''β'',
''γ'', or
''φ'',
''θ'',
''ψ''. This presentation is convenient only for rotations about a fixed point.
*
Axis–angle representation
In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector indicating the direction of an axis of rotation, and an angle of rotation describing the magnitu ...
(pictured at the right) specifies an angle with the axis about which the rotation takes place. It can be easily visualised. There are two variants to represent it:
** as a pair consisting of the angle and a
unit vector
In mathematics, a unit vector in a normed vector space is a Vector (mathematics and physics), vector (often a vector (geometry), spatial vector) of Norm (mathematics), length 1. A unit vector is often denoted by a lowercase letter with a circumfle ...
for the axis, or
** as a
Euclidean vector
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scal ...
obtained by multiplying the angle with this unit vector, called the ''rotation vector'' (although, strictly speaking, it is a
pseudovector
In physics and mathematics, a pseudovector (or axial vector) is a quantity that transforms like a vector under continuous rigid transformations such as rotations or translations, but which does ''not'' transform like a vector under certain ' ...
).
* Matrices, versors (quaternions), and other
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
ic things: see the section
''Linear and Multilinear Algebra Formalism'' for details.

A general rotation in
four dimensions has only one fixed point, the centre of rotation, and no axis of rotation; see
rotations in 4-dimensional Euclidean space for details. Instead the rotation has two mutually orthogonal planes of rotation, each of which is fixed in the sense that points in each plane stay within the planes. The rotation has two angles of rotation, one for each
plane of rotation
In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space.
The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can ...
, through which points in the planes rotate. If these are and then all points not in the planes rotate through an angle between and . Rotations in four dimensions about a fixed point have six degrees of freedom. A four-dimensional direct motion in general position ''is'' a rotation about certain point (as in all
even Euclidean dimensions), but screw operations exist also.
Linear and multilinear algebra formalism
When one considers motions of the Euclidean space that preserve
the origin, the
distinction between points and vectors, important in pure mathematics, can be erased because there is a canonical
one-to-one correspondence
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivale ...
between points and
position vectors. The same is true for geometries other than
Euclidean, but whose space is an
affine space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
with a supplementary
structure
A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
; see
an example below. Alternatively, the vector description of rotations can be understood as a parametrization of geometric rotations
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation "
* if and are related by , that is,
* if holds, that is,
* if the equivalence classes of and with respect to are equal.
This figure of speech ...
their composition with translations. In other words, one vector rotation presents many
equivalent
Equivalence or Equivalent may refer to:
Arts and entertainment
*Album-equivalent unit, a measurement unit in the music industry
*Equivalence class (music)
*'' Equivalent VIII'', or ''The Bricks'', a minimalist sculpture by Carl Andre
*'' Equiva ...
rotations about ''all'' points in the space.
A motion that preserves the origin is the same as a
linear operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
on vectors that preserves the same geometric structure but expressed in terms of vectors. For
Euclidean vector
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scal ...
s, this expression is their ''magnitude'' (
Euclidean norm
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' ...
). In
components
Component may refer to:
In engineering, science, and technology Generic systems
*System components, an entity with discrete structure, such as an assembly or software module, within a system considered at a particular level of analysis
* Lumped e ...
, such operator is expressed with
orthogonal matrix
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.
One way to express this is
Q^\mathrm Q = Q Q^\mathrm = I,
where is the transpose of and is the identi ...
that is multiplied to
column vector
In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example,
\boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end.
Similarly, a row vector is a 1 \times n matrix for some , c ...
s.
As it
was already stated, a (proper) rotation is different from an arbitrary fixed-point motion in its preservation of the orientation of the vector space. Thus, the
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of a rotation orthogonal matrix must be 1. The only other possibility for the determinant of an orthogonal matrix is , and this result means the transformation is a
hyperplane reflection, a
point reflection
In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or ...
(for
odd ), or another kind of
improper rotation
In geometry, an improper rotation. (also called rotation-reflection, rotoreflection, rotary reflection,. or rotoinversion) is an isometry in Euclidean space that is a combination of a Rotation (geometry), rotation about an axis and a reflection ( ...
. Matrices of all proper rotations form the
special orthogonal group
In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
.
Two dimensions
In two dimensions, to carry out a rotation using a matrix, the point to be rotated counterclockwise is written as a column vector, then multiplied by a
rotation matrix
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation (mathematics), rotation in Euclidean space. For example, using the convention below, the matrix
:R = \begin
\cos \theta & -\sin \theta \\
\sin \t ...
calculated from the angle :
:
.
The coordinates of the point after rotation are , and the formulae for and are
:
The vectors
and
have the same magnitude and are separated by an angle as expected.
Points on the plane can be also presented as
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s: the point in the plane is represented by the complex number
:
This can be rotated through an angle by multiplying it by , then expanding the product using
Euler's formula
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for ...
as follows:
:
and equating real and imaginary parts gives the same result as a two-dimensional matrix:
:
Since complex numbers form a
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
, vector rotations in two dimensions are commutative, unlike in higher dimensions. They have only one
degree of freedom
In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinites ...
, as such rotations are entirely determined by the angle of rotation.
Three dimensions
As in two dimensions, a matrix can be used to rotate a point to a point . The matrix used is a matrix,
:
This is multiplied by a vector representing the point to give the result
:
The set of all appropriate matrices together with the operation of
matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
is the
rotation group SO(3)
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space \R^3 under the operation of composition.
By definition, a rotation about the origin is a ...
. The matrix is a member of the three-dimensional
special orthogonal group
In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
, , that is it is an
orthogonal matrix
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.
One way to express this is
Q^\mathrm Q = Q Q^\mathrm = I,
where is the transpose of and is the identi ...
with
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
1. That it is an orthogonal matrix means that its rows are a set of orthogonal
unit vector
In mathematics, a unit vector in a normed vector space is a Vector (mathematics and physics), vector (often a vector (geometry), spatial vector) of Norm (mathematics), length 1. A unit vector is often denoted by a lowercase letter with a circumfle ...
s (so they are an
orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite Dimension (linear algebra), dimension is a Basis (linear algebra), basis for V whose vectors are orthonormal, that is, they are all unit vec ...
) as are its columns, making it simple to spot and check if a matrix is a valid rotation matrix.
Above-mentioned Euler angles and axis–angle representations can be easily converted to a rotation matrix.
Another possibility to represent a rotation of three-dimensional Euclidean vectors are quaternions described below.
Quaternions
Unit
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
s, or ''
versor
In mathematics, a versor is a quaternion of Quaternion#Norm, norm one, also known as a unit quaternion. Each versor has the form
:u = \exp(a\mathbf) = \cos a + \mathbf \sin a, \quad \mathbf^2 = -1, \quad a \in ,\pi
where the r2 = −1 conditi ...
s'', are in some ways the least intuitive representation of three-dimensional rotations. They are not the three-dimensional instance of a general approach. They are more compact than matrices and easier to work with than all other methods, so are often preferred in real-world applications.
A versor (also called a ''rotation quaternion'') consists of four real numbers, constrained so the
norm
Norm, the Norm or NORM may refer to:
In academic disciplines
* Normativity, phenomenon of designating things as good or bad
* Norm (geology), an estimate of the idealised mineral content of a rock
* Norm (philosophy), a standard in normative e ...
of the quaternion is 1. This constraint limits the degrees of freedom of the quaternion to three, as required. Unlike matrices and complex numbers two multiplications are needed:
:
where is the versor, is its
inverse, and is the vector treated as a quaternion with zero
scalar part. The quaternion can be related to the rotation vector form of the axis angle rotation by the
exponential map over the quaternions,
:
where is the rotation vector treated as a quaternion.
A single multiplication by a versor,
either left or right, is itself a rotation, but in four dimensions. Any four-dimensional rotation about the origin can be represented with two quaternion multiplications: one left and one right, by two ''different'' unit quaternions.
Further notes
More generally, coordinate rotations in any dimension are represented by orthogonal matrices. The set of all orthogonal matrices in dimensions which describe proper rotations (determinant = +1), together with the operation of matrix multiplication, forms the
special orthogonal group
In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
.
Matrices are often used for doing transformations, especially when a large number of points are being transformed, as they are a direct representation of the
linear operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
. Rotations represented in other ways are often converted to matrices before being used. They can be extended to represent rotations and transformations at the same time using
homogeneous coordinates
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. ...
.
Projective transformation
In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
s are represented by matrices. They are not rotation matrices, but a transformation that represents a Euclidean rotation has a rotation matrix in the upper left corner.
The main disadvantage of matrices is that they are more expensive to calculate and do calculations with. Also in calculations where
numerical instability is a concern matrices can be more prone to it, so calculations to restore
orthonormality
In linear algebra, two vector space, vectors in an inner product space are orthonormal if they are orthogonality, orthogonal unit vectors. A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means th ...
, which are expensive to do for matrices, need to be done more often.
More alternatives to the matrix formalism
As was demonstrated above, there exist three
multilinear algebra
Multilinear algebra is the study of Function (mathematics), functions with multiple vector space, vector-valued Argument of a function, arguments, with the functions being Linear map, linear maps with respect to each argument. It involves concept ...
rotation formalisms: one with
U(1), or complex numbers, for two dimensions, and two others with
versors, or quaternions, for three and four dimensions.
In general (even for vectors equipped with a non-Euclidean Minkowski
quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example,
4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong t ...
) the rotation of a vector space can be expressed as a
bivector
In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. Considering a scalar as a degree-zero quantity and a vector as a degree-one quantity, a bivector is of ...
. This formalism is used in
geometric algebra
In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric pr ...
and, more generally, in the
Clifford algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real number ...
representation of Lie groups.
In the case of a positive-definite Euclidean quadratic form, the double
covering group
In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous (topology), continuous group homomorphism. The map ''p'' is called the c ...
of the isometry group
is known as the
Spin group
In mathematics the spin group, denoted Spin(''n''), page 15 is a Lie group whose underlying manifold is the double cover of the special orthogonal group , such that there exists a short exact sequence of Lie groups (when )
:1 \to \mathbb_2 \to \o ...
,
. It can be conveniently described in terms of a Clifford algebra. Unit quaternions give the group
.
In non-Euclidean geometries
In
spherical geometry
300px, A sphere with a spherical triangle on it.
Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres.
Long studied for its practical applicati ...
, a direct motion of the
-sphere (an example of the
elliptic geometry
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
) is the same as a rotation of -dimensional Euclidean space about the origin (). For odd , most of these motions do not have fixed points on the -sphere and, strictly speaking, are not rotations ''of the sphere''; such motions are sometimes referred to as ''
Clifford translations''. Rotations about a fixed point in elliptic and
hyperbolic
Hyperbolic may refer to:
* of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics
** Hyperbolic geometry, a non-Euclidean geometry
** Hyperbolic functions, analogues of ordinary trigonometric functions, defined u ...
geometries are not different from Euclidean ones.
Affine geometry
In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle.
As the notion of '' parallel lines'' is one of the main properties that is i ...
and
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
have not a distinct notion of rotation.
In relativity
A generalization of a rotation applies in
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
, where it can be considered to operate on a four-dimensional space,
spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
, spanned by three space dimensions and one of time. In special relativity, this space is called
Minkowski space
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.
The model helps show how a ...
, and the four-dimensional rotations, called
Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant vel ...
s, have a physical interpretation. These transformations preserve a quadratic form called the
spacetime interval
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizin ...
.
If a rotation of Minkowski space is in a space-like plane, then this rotation is the same as a spatial rotation in Euclidean space. By contrast, a rotation in a plane spanned by a space-like dimension and a time-like dimension is a
hyperbolic rotation
In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation or shear mapping.
For a fixed positive real number , th ...
, and if this plane contains the time axis of the reference frame, is called a "Lorentz boost". These transformations demonstrate the
pseudo-Euclidean nature of the Minkowski space. Hyperbolic rotations are sometimes described as "
squeeze mapping
In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation (mathematics), rotation or shear mapping.
For a fixed p ...
s" and frequently appear on
Minkowski diagram
A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity. Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction with ...
s that visualize (1 + 1)-dimensional pseudo-Euclidean geometry on planar drawings. The study of relativity deals with the
Lorentz group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physi ...
generated by the space rotations and hyperbolic rotations.
[Hestenes 1999, pp. 580–588.]
Whereas rotations, in physics and astronomy, correspond to rotations of
celestial sphere
In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, ...
as a
2-sphere
A sphere (from Greek , ) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ''center' ...
in the Euclidean 3-space, Lorentz transformations from induce
conformal transformations of the celestial sphere. It is a broader class of the sphere transformations known as
Möbius transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form
f(z) = \frac
of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying .
Geometrically ...
s.
Discrete rotations
Importance
Rotations define important classes of
symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
:
rotational symmetry
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape (geometry), shape has when it looks the same after some rotation (mathematics), rotation by a partial turn (angle), turn. An object's degree of rotational s ...
is an
invariance with respect to a ''particular rotation''. The
circular symmetry
In geometry, circular symmetry is a type of continuous symmetry for a Plane (geometry), planar object that can be rotational symmetry, rotated by any arbitrary angle and map onto itself.
Rotational circular symmetry is isomorphic with the circl ...
is an invariance with respect to all rotation about the fixed axis.
As was stated above, Euclidean rotations are applied to
rigid body dynamics
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are '' rigid'' (i.e. they do not deform under the action ...
. Moreover, most of mathematical formalism in
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
(such as the
vector calculus
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
) is rotation-invariant; see
rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
for more physical aspects. Euclidean rotations and, more generally, Lorentz symmetry
described above are thought to be
symmetry laws of nature. In contrast, the
reflectional symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry.
In two-di ...
is not a precise symmetry law of nature.
Generalizations
The
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
-valued matrices analogous to real orthogonal matrices are the
unitary matrices , which represent rotations in complex space. The set of all unitary matrices in a given dimension forms a
unitary group
Unitary may refer to:
Mathematics
* Unitary divisor
* Unitary element
* Unitary group
* Unitary matrix
* Unitary morphism
* Unitary operator
* Unitary transformation
* Unitary representation
* Unitarity (physics)
* ''E''-unitary inverse semi ...
of degree ; and its subgroup representing proper rotations (those that preserve the orientation of space) is the
special unitary group
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1.
The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 ...
of degree . These complex rotations are important in the context of
spinor
In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
s. The elements of
are used to parametrize ''three''-dimensional Euclidean rotations (see
above
Above may refer to:
*Above (artist)
Tavar Zawacki (b. 1981, California) is a Polish, Portuguese - American abstract artist and
internationally recognized visual artist based in Berlin, Germany. From 1996 to 2016, he created work under the ...
), as well as respective transformations of the
spin
Spin or spinning most often refers to:
* Spin (physics) or particle spin, a fundamental property of elementary particles
* Spin quantum number, a number which defines the value of a particle's spin
* Spinning (textiles), the creation of yarn or thr ...
(see
representation theory of SU(2)).
See also
*
Aircraft principal axes
An aircraft in flight is free to rotate in three dimensions: '' yaw'', nose left or right about an axis running up and down; ''pitch'', nose up or down about an axis running from wing to wing; and ''roll'', rotation about an axis running from nos ...
*
Change of basis
In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are conside ...
*
Charts on SO(3)
In mathematics, the special orthogonal group in three dimensions, otherwise known as the rotation group SO(3), is a naturally occurring example of a manifold. The various charts on SO(3) set up rival coordinate systems: in this case there cannot ...
*
Rotations and reflections in two dimensions
In Euclidean geometry, two-dimensional rotations and reflections are two kinds of Euclidean plane isometries which are related to one another.
Process
A rotation in the plane can be formed by composing a pair of reflections. First reflect a p ...
*
CORDIC
CORDIC, short for coordinate rotation digital computer, is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots, multiplications, divisions, and exponentials and logarithms
In ma ...
*
Infinitesimal rotation matrix
*
Irrational rotation
*
Orientation (geometry)
In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a Line (geometry), line, plane (geometry), plane or rigid body – is part of the description of how it is placed in the Euclidean space, spa ...
*
Rodrigues' rotation formula
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transfo ...
*
Rotation of axes
In mathematics, a rotation of axes in two dimensions is a mapping from an ''xy''-Cartesian coordinate system to an ''x′y′''-Cartesian coordinate system in which the origin is kept fixed and the ''x′'' and ''y′'' axes ar ...
*
Vortex
In fluid dynamics, a vortex (: vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in th ...
Footnotes
References
*
*
*
{{Computer graphics
Euclidean symmetries
Rotational symmetry
Linear operators
Unitary operators