In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
series is the
sum of the terms of an
infinite sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is call ...
of numbers. More precisely, an infinite sequence
defines a
series that is denoted
:
The th
partial sum
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
is the sum of the first terms of the sequence; that is,
:
A series is convergent (or converges) if and only if the sequence
of its partial sums tends to a
limit; that means that, when adding one
after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if and only if there exists a number
such that for every arbitrarily small positive number
, there is a (sufficiently large)
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
such that for all
,
:
If the series is convergent, the (necessarily unique) number
is called the ''sum of the series''.
The same notation
:
is used for the series, and, if it is convergent, to its sum. This convention is similar to that which is used for addition: denotes the ''operation of adding and '' as well as the result of this ''addition'', which is called the ''sum'' of and .
Any series that is not convergent is said to be
divergent or to diverge.
Examples of convergent and divergent series
* The reciprocals of the
positive integers
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
produce a
divergent series
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.
If a series converges, the individual terms of the series mus ...
(
harmonic series):
*:
* Alternating the signs of the reciprocals of positive integers produces a convergent series (
alternating harmonic series):
*:
* The reciprocals of
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s produce a
divergent series
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.
If a series converges, the individual terms of the series mus ...
(so the set of primes is "
large
Large means of great size.
Large may also refer to:
Mathematics
* Arbitrarily large, a phrase in mathematics
* Large cardinal, a property of certain transfinite numbers
* Large category, a category with a proper class of objects and morphisms (o ...
"; see
divergence of the sum of the reciprocals of the primes):
*:
* The reciprocals of
triangular numbers produce a convergent series:
*:
* The reciprocals of
factorial
In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial:
\begin
n! &= n \times ...
s produce a convergent series (see
e):
*:
* The reciprocals of
square number
In mathematics, a square number or perfect square is an integer that is the square (algebra), square of an integer; in other words, it is the multiplication, product of some integer with itself. For example, 9 is a square number, since it equals ...
s produce a convergent series (the
Basel problem
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 ...
):
*:
* The reciprocals of
powers of 2 produce a convergent series (so the set of powers of 2 is "
small
Small means of insignificant size
Size in general is the Magnitude (mathematics), magnitude or dimensions of a thing. More specifically, ''geometrical size'' (or ''spatial size'') can refer to three geometrical measures: length, area, or ...
"):
*:
* The reciprocals of
powers of any n>1 produce a convergent series:
*:
* Alternating the signs of reciprocals of
powers of 2 also produces a convergent series:
*:
* Alternating the signs of reciprocals of powers of any n>1 produces a convergent series:
*:
* The reciprocals of
Fibonacci number
In mathematics, the Fibonacci sequence is a Integer sequence, sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted . Many w ...
s produce a convergent series (see
ψ):
*:
Convergence tests
There are a number of methods of determining whether a series converges or
diverges.
Comparison test. The terms of the sequence
are compared to those of another sequence
. If,
for all ''n'',
, and
converges, then so does
However,
if, for all ''n'',
, and
diverges, then so does
Ratio test
In mathematics, the ratio test is a convergence tests, test (or "criterion") for the convergent series, convergence of a series (mathematics), series
:\sum_^\infty a_n,
where each term is a real number, real or complex number and is nonzero wh ...
. Assume that for all ''n'',
is not zero. Suppose that there exists
such that
:
If ''r'' < 1, then the series is absolutely convergent. If then the series diverges. If the ratio test is inconclusive, and the series may converge or diverge.
Root test
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity
:\limsup_\sqrt
where a_n are the terms of the series, and states that the series converges absolutely if t ...
or ''n''th root test. Suppose that the terms of the sequence in question are
non-negative
In mathematics, the sign of a real number is its property of being either positive, negative, or 0. Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign. ...
. Define ''r'' as follows:
:
:where "lim sup" denotes the
limit superior
In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting (that is, eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For ...
(possibly ∞; if the limit exists it is the same value).
If ''r'' < 1, then the series converges. If then the series diverges. If the root test is inconclusive, and the series may converge or diverge.
The ratio test and the root test are both based on comparison with a geometric series, and as such they work in similar situations. In fact, if the ratio test works (meaning that the limit exists and is not equal to 1) then so does the root test; the converse, however, is not true. The root test is therefore more generally applicable, but as a practical matter the limit is often difficult to compute for commonly seen types of series.
Integral test. The series can be compared to an integral to establish convergence or divergence. Let
be a positive and
monotonically decreasing function. If
:
then the series converges. But if the integral diverges, then the series does so as well.
Limit comparison test. If
, and the limit
exists and is not zero, then
converges
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
converges.
Alternating series test. Also known as the ''Leibniz criterion'', the
alternating series test states that for an
alternating series
In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed
\sum_^\infty (-1)^n a_n or \sum_^\infty (-1)^ a_n
with for all .
Like an ...
of the form
, if
is monotonically
decreasing, and has a limit of 0 at infinity, then the series converges.
Cauchy condensation test. If
is a positive monotone decreasing sequence, then
converges if and only if
converges.
Dirichlet's test
Abel's test
Conditional and absolute convergence
If the series
converges, then the series
is said to be
absolutely convergent. Every absolute convergent series (real or complex)
is also convergent, but the converse is not true. The
Maclaurin series of the
exponential function is absolutely convergent for every
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
value of the variable.
If the series
converges but the series
diverges, then the series
is
conditionally convergent. The Maclaurin series of the
logarithm function is conditionally convergent for (see the
Mercator series).
The
Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.
Agnew's theorem characterizes rearrangements that preserve convergence for all series.
Uniform convergence
Let
be a sequence of functions.
The series
is said to converge uniformly to ''f''
if the sequence
of partial sums defined by
:
converges uniformly to ''f''.
There is an analogue of the comparison test for infinite series of functions called the
Weierstrass M-test.
Cauchy convergence criterion
The
Cauchy convergence criterion states that a series
:
converges
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
the sequence of
partial sum
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
s is a
Cauchy sequence
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are le ...
.
This means that for every
there is a positive integer
such that for all
we have
:
This is equivalent to
See also
*
Normal convergence
*
List of mathematical series
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.
*Here, 0^0 Zero to the power of zero, is taken to have the value 1
*\ denotes the fractional part ...
External links
*
* Weisstein, Eric (2005)
Riemann Series Theorem Retrieved May 16, 2005.
{{Series (mathematics)
Series (mathematics)
Convergence (mathematics)