HOME

TheInfoList



OR:

The compression ratio is the ratio between the maximum and minimum volume during the compression stage of the power cycle in a
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder (engine), cylinder a ...
or
Wankel engine The Wankel engine (, ) is a type of internal combustion engine using an eccentric (mechanism), eccentric Pistonless rotary engine, rotary design to convert pressure into rotating motion. The concept was proven by German engineer Felix Wankel, f ...
. A fundamental specification for such engines, it can be measured in two different ways. The simpler way is the static compression ratio: in a
reciprocating engine A reciprocating engine, more often known as a piston engine, is a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common features of al ...
, this is the ratio of the volume of the cylinder when the piston is at the bottom of its stroke to that volume when the piston is at the top of its stroke. The dynamic compression ratio is a more advanced calculation which also takes into account gases entering and exiting the cylinder during the compression phase.


Effect and typical ratios

A high compression ratio is desirable because it allows an engine to extract more mechanical energy from a given mass of air–fuel mixture due to its higher
thermal efficiency In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc. For ...
. This occurs because internal combustion engines are
heat engine A heat engine is a system that transfers thermal energy to do mechanical or electrical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, pa ...
s, and higher compression ratios permit the same combustion temperature to be reached with less fuel, while giving a longer expansion cycle, creating more mechanical power output and lowering the exhaust temperature.


Petrol engines

In
petrol Gasoline (North American English) or petrol ( Commonwealth English) is a petrochemical product characterized as a transparent, yellowish, and flammable liquid normally used as a fuel for spark-ignited internal combustion engines. When formul ...
(gasoline) engines used in passenger cars for the past 20 years, compression ratios have typically been between 8:1 and 12:1. Several production engines have used higher compression ratios, including: * Cars built from 1955 to 1972 which were designed for high-octane leaded gasoline, which allowed compression ratios up to 13:1. * Some Mazda
SkyActiv Skyactiv (styled SKYACTIV) is a brand name for a series of automobile technologies developed by Mazda that increase fuel efficiency and engine output. The initial announcement of the Skyactiv technologies included new engines, transmissions, body ...
engines released since 2012 have compression ratios up to 16:1. The SkyActiv engine achieves this compression ratio with ordinary unleaded gasoline (95 RON in the United Kingdom) through improved scavenging of exhaust gases (which ensures cylinder temperature is as low as possible before the intake stroke), in addition to direct injection. * Toyota Dynamic Force engine has a compression ratio up to 14:1. * The 2014 Ferrari 458 Speciale also has a compression ratio of 14:1. When forced induction (e.g. a
turbocharger In an internal combustion engine, a turbocharger (also known as a turbo or a turbosupercharger) is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake air, forcing more air into th ...
or
supercharger In an internal combustion engine, a supercharger compresses the intake gas, forcing more air into the engine in order to produce more power for a given displacement (engine), displacement. It is a form of forced induction that is mechanically ...
) is used, the compression ratio is often lower than naturally aspirated engines. This is due to the turbocharger or supercharger already having compressed the air before it enters the cylinders. Engines using port fuel-injection typically run lower boost pressures and/or compression ratios than direct injected engines because port fuel injection causes the air–fuel mixture to be heated together, leading to detonation. Conversely, directly injected engines can run higher boost because heated air will not detonate without a fuel being present. Higher compression ratios can make gasoline (petrol) engines subject to engine knocking (also known as "detonation", "pre-ignition", or "pinging") if lower octane-rated fuel is used. This can reduce efficiency or damage the engine if knock sensors are not present to modify the ignition timing.


Diesel engines

Diesel engine The diesel engine, named after the German engineer Rudolf Diesel, is an internal combustion engine in which Combustion, ignition of diesel fuel is caused by the elevated temperature of the air in the cylinder due to Mechanics, mechanical Compr ...
s use higher compression ratios than petrol engines, because the lack of a spark plug means that the compression ratio must increase the temperature of the air in the cylinder sufficiently to ignite the diesel using compression ignition. Compression ratios are often between 14:1 and 23:1 for direct injection diesel engines, and between 18:1 and 23:1 for indirect injection diesel engines. At the lower end of 14:1, NOx emissions are reduced at a cost of more difficult cold-start. Mazda's Skyactiv-D, the first such commercial engine from 2013, used adaptive fuel injectors among other techniques to ease cold start.


Other fuels

The compression ratio may be higher in engines running exclusively on
liquefied petroleum gas Liquefied petroleum gas, also referred to as liquid petroleum gas (LPG or LP gas), is a fuel gas which contains a flammable mixture of hydrocarbon gases, specifically propane, Butane, ''n''-butane and isobutane. It can also contain some ...
(LPG or "propane autogas") or compressed natural gas, due to the higher octane rating of these fuels.
Kerosene Kerosene, or paraffin, is a combustibility, combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in Aviation fuel, aviation as well as households. Its name derives from the Greek (''kērós'') meaning " ...
engines typically use a compression ratio of 6.5 or lower. The petrol-paraffin engine version of the Ferguson TE20 tractor had a compression ratio of 4.5:1 for operation on tractor vaporising oil with an
octane rating An octane rating, or octane number, is a standard measure of a liquid fuel, fuel's ability to withstand Compression ratio, compression in an internal combustion engine without causing engine knocking. The higher the octane number, the more compres ...
between 55 and 70.


Motorsport engines

Motorsport Motorsport or motor sport are sporting events, competitions and related activities that primarily involve the use of Car, automobiles, motorcycles, motorboats and Aircraft, powered aircraft. For each of these vehicle types, the more specific term ...
engines often run on high-octane petrol and can therefore use higher compression ratios. For example, motorcycle racing engines can use compression ratios as high as 14.7:1, and it is common to find motorcycles with compression ratios above 12.0:1 designed for 95 or higher octane fuel. Ethanol and methanol can take significantly higher compression ratios than gasoline. Racing engines burning
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
and ethanol fuel often have a compression ratio of 14:1 to 16:1.


Mathematical formula

In a
reciprocating engine A reciprocating engine, more often known as a piston engine, is a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common features of al ...
, the static compression ratio (\mathrm) is the ratio between the volume of the cylinder and combustion chamber when the piston is at the bottom of its stroke, and the volume of the combustion chamber when the piston is at the top of its stroke. It is therefore calculated by the formula \mathrm = \frac where *V_d is the displacement volume. This is the volume inside the cylinder displaced by the piston from the beginning of the compression stroke to the end of the stroke. *V_c is the clearance volume. This is the volume of the space in the cylinder left at the end of the compression stroke. V_d can be estimated by the cylinder volume formula: V_d = \tfrac b^2 s where *b is the cylinder bore (diameter) *s is the
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder (engine), cylinder a ...
stroke Stroke is a medical condition in which poor cerebral circulation, blood flow to a part of the brain causes cell death. There are two main types of stroke: brain ischemia, ischemic, due to lack of blood flow, and intracranial hemorrhage, hemor ...
length Because of the complex shape of V_c it is usually measured directly. This is often done by filling the cylinder with liquid and then measuring the volume of the used liquid.


Variable compression ratio engines

Most engines use a fixed compression ratio, however a variable compression ratio engine is able to adjust the compression ratio while the engine is in operation. The first production engine with a variable compression ratio was introduced in 2019. Variable compression ratio is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. This is done to increase
fuel efficiency Fuel efficiency (or fuel economy) is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical energy, chemical potential energy contained in a carrier (fuel) into kinetic energy or Mechanical work, w ...
while under varying loads. Variable compression engines allow the volume above the piston at top dead centre to be changed. Higher loads require lower ratios to increase power, while lower loads need higher ratios to increase efficiency, i.e. to lower fuel consumption. For automotive use this needs to be done as the engine is running in response to the load and driving demands. The 2019 Infiniti QX50 is the first commercially available car that uses a variable compression ratio engine.


Dynamic compression ratio

The ''static compression ratio'' discussed above — calculated solely based on the cylinder and combustion chamber volumes — does not take into account any gases entering or exiting the cylinder during the compression phase. In most automotive engines, the intake valve closure (which seals the cylinder) takes place during the compression phase (i.e. after bottom dead centre, BDC), which can cause some of the gases to be pushed back out through the intake valve. On the other hand, intake port tuning and scavenging can cause a greater amount of gas to be trapped in the cylinder than the static volume would suggest. The ''dynamic compression ratio'' accounts for these factors. The dynamic compression ratio is higher with more conservative intake camshaft timing (i.e. soon after BDC), and lower with more radical intake camshaft timing (i.e. later after BDC). Regardless, the dynamic compression ratio is always lower than the static compression ratio. Absolute cylinder pressure is used to calculate the dynamic compression ratio, using the following formula: P_\text = P_\text \times \text^\gamma where \gamma is a polytropic value for the ratio of specific heats for the combustion gases at the temperatures present (this compensates for the temperature rise caused by compression, as well as heat lost to the cylinder) Under ideal (adiabatic) conditions, the ratio of specific heats would be 1.4, but a lower value, generally between 1.2 and 1.3 is used, since the amount of heat lost will vary among engines based on design, size and materials used. For example, if the static compression ratio is 10:1, and the dynamic compression ratio is 7.5:1, a useful value for cylinder pressure would be 7.51.3 × atmospheric pressure, or 13.7  bar (relative to atmospheric pressure). The two corrections for dynamic compression ratio affect cylinder pressure in opposite directions, but not in equal strength. An engine with high static compression ratio and late intake valve closure will have a dynamic compression ratio similar to an engine with lower compression but earlier intake valve closure.


See also

* Mean effective pressure


References

{{Internal combustion engine, state=expanded Engine technology Engineering ratios Piston engines