HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, given
partial order In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable ...
s \preceq and \sqsubseteq on sets A and B, respectively, the product order (also called the coordinatewise order or componentwise order) is a partial order \leq on the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
A \times B. Given two pairs \left(a_1, b_1\right) and \left(a_2, b_2\right) in A \times B, declare that \left(a_1, b_1\right) \leq \left(a_2, b_2\right) if a_1 \preceq a_2 and b_1 \sqsubseteq b_2. Another possible order on A \times B is the
lexicographical order In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a ...
. It is a
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
if both A and B are totally ordered. However the product order of two
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
s is not in general total; for example, the pairs (0, 1) and (1, 0) are incomparable in the product order of the order 0 < 1 with itself. The lexicographic combination of two total orders is a
linear extension In order theory, a branch of mathematics, a linear extension of a partial order is a total order (or linear order) that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear extensi ...
of their product order, and thus the product order is a subrelation of the lexicographic order. The Cartesian product with the product order is the
categorical product In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, an ...
in the
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
of partially ordered sets with
monotone function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of ord ...
s. The product order generalizes to arbitrary (possibly infinitary) Cartesian products. Suppose A \neq \varnothing is a set and for every a \in A, \left(I_a, \leq\right) is a preordered set. Then the on \prod_ I_a is defined by declaring for any i_ = \left(i_a\right)_ and j_ = \left(j_a\right)_ in \prod_ I_a, that :i_ \leq j_ if and only if i_a \leq j_a for every a \in A. If every \left(I_a, \leq\right) is a partial order then so is the product preorder. Furthermore, given a set A, the product order over the Cartesian product \prod_ \ can be identified with the inclusion order of subsets of A. The notion applies equally well to
preorder In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive relation, reflexive and Transitive relation, transitive. The name is meant to suggest that preorders are ''almost'' partial orders, ...
s. The product order is also the categorical product in a number of richer categories, including lattices and
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
s.


See also

* Direct product of binary relations * Examples of partial orders *
Star product A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of l ...
, a different way of combining partial orders * Orders on the Cartesian product of totally ordered sets * Ordinal sum of partial orders *


References

Order theory {{math-stub