Compatible System Of ℓ-adic Representations
   HOME

TheInfoList



OR:

In
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, a compatible system of ℓ-adic representations is an abstraction of certain important families of ℓ-adic
Galois representation In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring ...
s, indexed by
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s ℓ, that have compatibility properties for
almost all In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning o ...
ℓ.


Examples

Prototypical examples include the
cyclotomic character In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring , its representation space is generally denoted by (that is, it ...
and the
Tate module In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group ''A''. Often, this construction is made in the following situation: ''G'' is a commutative group scheme over a field ''K'', '' ...
of an
abelian variety In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group ...
.


Variations

A slightly more restrictive notion is that of a ''strictly'' compatible system of ℓ-adic representations which offers more control on the compatibility properties. More recently, some authorsSuch as have started requiring more compatibility related to ''p''-adic Hodge theory.


Importance

Compatible systems of ℓ-adic representations are a fundamental concept in contemporary
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
.


Notes


References

* * {{DEFAULTSORT:Compatible system of l-adic representations Algebraic number theory