CFU-GEMM is a
colony forming unit that generates
myeloid
Myeloid tissue, in the bone marrow sense of the word '' myeloid'' ('' myelo-'' + ''-oid''), is tissue of bone marrow, of bone marrow cell lineage, or resembling bone marrow, and myelogenous tissue (''myelo-'' + '' -genous'') is any tissue of, ...
cells. CFU-GEMM cells are the oligopotential
progenitor cells
for myeloid cells; they are thus also called common myeloid progenitor cells or myeloid stem cells. "GEMM" stands for
granulocyte
Granulocytes are
cells in the innate immune system characterized by the presence of specific granules in their cytoplasm. Such granules distinguish them from the various agranulocytes. All myeloblastic granulocytes are polymorphonuclear. They ha ...
,
erythrocyte,
monocyte,
megakaryocyte.
The common myeloid progenitor (CMP) and the common lymphoid progenitor (CLP) are the first branch of
cell differentiation
Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellula ...
in
hematopoiesis after the hemocytoblast (
hematopoietic stem cell
Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the very first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within t ...
).
Structure
In current terminology, CFU-S refers to the pluripotent stem cells that can differentiate into all types of blood cells. CFU-S divides into two lineages: the lymphoid precursor (CFU-LSC) and the myeloid precursor (CFU-GEMM). The CFU-GEMM cell is capable of differentiating into white blood cells, red blood cells, and platelets, all of which are normally found in circulating blood.
It has been suggested that
eosinophils do not derive from the common myeloid progenitor in humans.

In the adjacent image, CFU-GEMM is the scientific name for the "common myeloid progenitor" that is responsible for forming all the cells of the myeloid lineages. As observed in the image, CFU-GEMM is capable of producing a diverse set of cells. It matures into the megakaryocyte, erythrocyte, mast cell or myeloblast based on the presence of specific factors that encourage the cell to choose a lineage to follow.
Surface markers

The cells are characterized by expressing the cell surface markers
CD33,
CD34 and
HLA-DR.
These surface markers are proteins on the surface that are unique to specific cells and certain maturation periods, allowing researchers to differentiate between two different cells as well as what stage the cell is found in its developmental progression.
Development
Growth factors
The differentiation and proliferation of CFU-GEMM are promoted by growth factors, such as
interleukins and cytokines.
IL-3 and GM-CSF as single factors are equally active in stimulating CFU-GEMM, but the combination of both factors produces additive stimulatory effects upon CFU-GEMM. The growth of CFU-GEMM is stimulated by the stem cell factor, or
SCF. SCF has been found also to synergize with GM-CSF,
IL-6,
IL-3,
IL-11 or
erythropoietin
Erythropoietin (; EPO), also known as erythropoetin, haematopoietin, or haemopoietin, is a glycoprotein cytokine secreted mainly by the kidneys in response to cellular hypoxia; it stimulates red blood cell production (erythropoiesis) in the bo ...
to increase the numbers of CFU-GEMM.
CFU-GEMM gives rise to
CFU-GM (leading to
monoblasts and
myeloblast
The myeloblast is a unipotent stem cell which differentiates into the effectors of the granulocyte series. It is found in the bone marrow. Stimulation of myeloblasts by G-CSF and other cytokines triggers maturation, differentiation, proliferation a ...
s), CFU-Meg (leading to
megakaryoblasts), and
CFU-E (leading to
proerythroblasts). The stem cell will follow a specific lineage depending on the presence of certain growth factors and
cytokines. The GM-CSF and IL-3 both work together to stimulate production of all lines. When erythropoietin (EPO) is present, red blood cell production from the CFU-GEMM will be activated. G-CSF, M-CSF, IL-5, IL-4, and IL-3 stimulate the production of neutrophils, monocytes, eosinophils, basophils, and platelets, respectively.
Research studies
Since the CFU-GEMM cell is a very early ancestor of the mature cells of the blood, it is not normally found in the blood. While present in
bone marrow
Bone marrow is a semi-solid tissue found within the spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It is composed of hematopoietic ce ...
, the place where CFU-GEMM is most common is in the
umbilical cord between a mother and baby. It has been discovered that these cells have a high re
plating efficiency
Plating efficiency ("PE") is a measure of the number of colonies originating from single cells. It is a very sensitive test and is often used for determining the nutritional requirements of cells, testing serum lots, measuring the effects of ...
, meaning that when taken from the umbilical cord and grown in culture, a high percentage of these cells are able to produce colonies. The results of studies conducted by Carow, Hangoc, and Broxmeyer in 1993 reveal that the CFU-GEMM can be classified as a stem cell due to its high replating efficiency in the presence of certain growth factors and cytokines.
The growth and production of CFU-GEMM and BFU-E depend on stimulatory factors from a source of burst-promoting activity (BPA) such as the release of interleukin-1 (IL-1) by
monocytes, a has been studied in 1987. It has also been shown that
fibroblast
A fibroblast is a type of cell (biology), biological cell that synthesizes the extracellular matrix and collagen, produces the structural framework (Stroma (tissue), stroma) for animal Tissue (biology), tissues, and plays a critical role in wound ...
s are capable of secreting these BPAs, however only respond to regulatory molecule such as interleukin-1. The results showed that IL-1 increases the stimulatory effects of CFU-GEMM in a dose-dependent fashion with a maximum efficacy around 140 ng/mL. This study revealed that IL-1 plays an important role in the regulation of the production of stimulatory factors that influence the progenitor cells of
hematopoiesis.
In another study in 2014, researchers were in search of molecules to stimulate the proliferation of long-term hematopoietic stem cells (LT-HSC). They tested a library of more than 5000 small molecules, with all except one (UM729) suppressing growth. A more potent analog was generated and named UM171. When compared to other similar chemicals, UM171 allowed for more HSC proliferation and lower apoptotic cell number compared to controls, along with a higher number in multipotential progenitors like CFU-GEMM. Furthermore, UM171 did not affect division rate. When used in conjunction with SR1, a known
transcription factor, UM171 allowed for suppression of differentiation and led to increased CFU-GEMM growth. These results suggest that UM171+SR1 together enhance proliferation of progenitor cells and suppress differentiation.
See also
*
List of human cell types derived from the germ layers
This is a list of cells in humans derived from the three embryonic germ layers – ectoderm, mesoderm, and endoderm.
Cells derived from ectoderm
Surface ectoderm Skin
* Trichocyte
* Keratinocyte
Anterior pituitary
* Gonadotrope
* Corticotro ...
References
{{Authority control
Blood cells
Colony forming units